
Joost de Winter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3008886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of an occlusion-induced delay on braking behavior in critical situations: A driving simulator study. Human Factors, 2023, 65, 1336-1344.	3.5	0
2	External Human–Machine Interfaces Can Be Misleading: An Examination of Trust Development and Misuse in a CAVE-Based Pedestrian Simulation Environment. Human Factors, 2022, 64, 1070-1085.	3.5	43
3	Using Eye-Tracking Data to Predict Situation Awareness in Real Time During Takeover Transitions in Conditionally Automated Driving. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 2284-2295.	8.0	38
4	Do cyclists need HMIs in future automated traffic? An interview study. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 84, 33-52.	3.7	17
5	The effect of drivers' eye contact on pedestrians' perceived safety. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 84, 194-210.	3.7	11
6	Ipsilateral and contralateral warnings: effects on decision-making and eye movements in near-collision scenarios. Journal on Multimodal User Interfaces, 2022, 16, 303-317.	2.9	4
7	When terminology hinders research: the colloquialisms of transitions of control in automated driving. Cognition, Technology and Work, 2022, 24, 509-520.	3.0	2
8	What Attracts the Driver's Eye? Attention as a Function of Task and Events. Information (Switzerland), 2022, 13, 333.	2.9	4
9	External human–machine interfaces: Gimmick or necessity?. Transportation Research Interdisciplinary Perspectives, 2022, 15, 100643.	2.7	10
10	Acceptance of conditionally automated cars: Just one factor?. Transportation Research Interdisciplinary Perspectives, 2022, 15, 100645.	2.7	5
11	Stopping by looking: A driver-pedestrian interaction study in a coupled simulator using head-mounted displays with eye-tracking. Applied Ergonomics, 2022, 105, 103825.	3.1	6
12	Augmented Visual Feedback: Cure or Distraction?. Human Factors, 2021, 63, 1156-1168.	3.5	2
13	How do driving modes affect the vehicle's dynamic behaviour? Comparing Renault's Multi-Sense sport and comfort modes during on-road naturalistic driving. Vehicle System Dynamics, 2021, 59, 485-503.	3.7	9
14	How do pedestrians distribute their visual attention when walking through a parking garage? An eye-tracking study. Ergonomics, 2021, 64, 793-805.	2.1	16
15	Pitfalls of Statistical Methods in Traffic Psychology. , 2021, , 87-95.		2
16	Multivariate and location-specific correlates of fuel consumption: A test track study. Transportation Research, Part D: Transport and Environment, 2021, 92, 102627.	6.8	1
17	Vulnerable road users and the coming wave of automated vehicles: Expert perspectives. Transportation Research Interdisciplinary Perspectives, 2021, 9, 100293.	2.7	69
18	Is accommodation a confounder in pupillometry research?. Biological Psychology, 2021, 160, 108046.	2.2	4

#	Article	IF	CITATIONS
19	l See Your Gesture: A VR-Based Study of Bidirectional Communication between Pedestrians and Automated Vehicles. Journal of Advanced Transportation, 2021, 2021, 1-10.	1.7	9
20	External human-machine interfaces: Effects of message perspective. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 78, 30-41.	3.7	20
21	Why human factors science is demonstrably necessary: historical and evolutionary foundations. Ergonomics, 2021, 64, 1115-1131.	2.1	13
22	Automated vehicles that communicate implicitly: examining the use of lateral position within the lane. Ergonomics, 2021, 64, 1416-1428.	2.1	19
23	Is the take-over paradigm a mere convenience?. Transportation Research Interdisciplinary Perspectives, 2021, 10, 100370.	2.7	14
24	What makes a good driver on public roads and race tracks? An interview study. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 80, 399-423.	3.7	6
25	Replicating five pupillometry studies of Eckhard Hess. International Journal of Psychophysiology, 2021, 165, 145-205.	1.0	12
26	Bio-inspired intent communication for automated vehicles. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 80, 127-140.	3.7	9
27	Towards the detection of driver–pedestrian eye contact. Pervasive and Mobile Computing, 2021, 76, 101455.	3.3	7
28	What driving style makes pedestrians think a passing vehicle is driving automatically?. Applied Ergonomics, 2021, 95, 103428.	3.1	10
29	Towards future pedestrian-vehicle interactions: Introducing theoretically-supported AR prototypes. , 2021, , .		8
30	How should external human-machine interfaces behave? Examining the effects of colour, position, message, activation distance, vehicle yielding, and visual distraction among 1,434 participants. Applied Ergonomics, 2021, 95, 103450.	3.1	30
31	Visual Attention of Pedestrians in Traffic Scenes: A Crowdsourcing Experiment. Lecture Notes in Networks and Systems, 2021, , 147-154.	0.7	1
32	Creating the Illusion of Sportiness: Evaluating Modified Throttle Mapping and Artificial Engine Sound for Electric Vehicles. Journal of Advanced Transportation, 2021, 2021, 1-15.	1.7	5
33	Driving examiners' views on data-driven assessment of test candidates: An interview study. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 83, 60-79.	3.7	2
34	A risk field-based metric correlates with driver's perceived risk in manual and automated driving: A test-track study. Transportation Research Part C: Emerging Technologies, 2021, 133, 103428.	7.6	12
35	Conceptual Testing of Visual HMIs for Merging of Trucks. Advances in Intelligent Systems and Computing, 2020, , 462-474.	0.6	2
36	What do subjective workload scales really measure? Operational and representational solutions to divergence of workload measures. Theoretical Issues in Ergonomics Science, 2020, 21, 369-396.	1.8	57

#	Article	IF	CITATIONS
37	Emergency braking at intersections: A motion-base motorcycle simulator study. Applied Ergonomics, 2020, 82, 102970.	3.1	12
38	How do drivers merge heavy goods vehicles onto freeways? A semi-structured interview unveiling needs for communication and support. Cognition, Technology and Work, 2020, 22, 825-842.	3.0	5
39	PC-based hazard anticipation training for experienced cyclists: Design and evaluation. Safety Science, 2020, 123, 104561.	4.9	11
40	External Human–Machine Interfaces: The Effect of Display Location on Crossing Intentions and Eye Movements. Information (Switzerland), 2020, 11, 13.	2.9	59
41	On Senders's Models of Visual Sampling Behavior. Human Factors, 2020, , 001872082095995.	3.5	3
42	Human-like driving behaviour emerges from a risk-based driver model. Nature Communications, 2020, 11, 4850.	12.8	74
43	Which parts of the road guide obstacle avoidance? Quantifying the driver's risk field. Applied Ergonomics, 2020, 89, 103196.	3.1	20
44	Feeling Uncertain—Effects of a Vibrotactile Belt that Communicates Vehicle Sensor Uncertainty. Information (Switzerland), 2020, 11, 353.	2.9	7
45	Takeover Quality: Assessing the Effects of Time Budget and Traffic Density with the Help of a Trajectory-Planning Method. Journal of Advanced Transportation, 2020, 2020, 1-12.	1.7	15
46	Attention Distribution While Detecting Conflicts between Converging Objects: An Eye-Tracking Study. Vision (Switzerland), 2020, 4, 34.	1.2	1
47	Risk perception: A study using dashcam videos and participants from different world regions. Traffic Injury Prevention, 2020, 21, 347-353.	1.4	13
48	Haptic Lane-Keeping Assistance for Truck Driving: A Test Track Study. Human Factors, 2020, 63, 001872082092862.	3.5	3
49	Take over! A video-clip study measuring attention, situation awareness, and decision-making in the face of an impending hazard. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 72, 211-225.	3.7	16
50	Redesigning Today's Driving Automation Toward Adaptive Backup Control With Context-Based and Invisible Interfaces. Human Factors, 2020, 62, 211-228.	3.5	7
51	External Human-Machine Interfaces: Which of 729 Colors Is Best for Signaling â€~Please (Do not) Cross'?. , 2020, , .		15
52	How Do People Perform an Inspection Time Task? An Examination of Visual Illusions, Task Experience, and Blinking. Journal of Cognition, 2020, 3, 34.	1.4	8
53	Cycling Skill Inventory: Assessment of motor–tactical skills and safety motives. Traffic Injury Prevention, 2019, 20, 3-9.	1.4	4
54	Will vehicle data be shared to address the how, where, and who of traffic accidents?. European Journal of Futures Research, 2019, 7, .	2.6	7

#	Article	IF	CITATIONS
55	Correlates of self-reported driving aberrations in Tehran: A study at the level of drivers and districts. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 63, 309-322.	3.7	6
56	What impressions do users have after a ride in an automated shuttle? An interview study. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 63, 252-269.	3.7	98
57	Determinants of take-over time from automated driving: A meta-analysis of 129 studies. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 64, 285-307.	3.7	215
58	When will most cars be able to drive fully automatically? Projections of 18,970 survey respondents. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 64, 184-195.	3.7	20
59	Pitfalls of automation: a faulty narrative?. Ergonomics, 2019, 62, 505-508.	2.1	10
60	How to keep drivers engaged while supervising driving automation? A literature survey and categorisation of six solution areas. Theoretical Issues in Ergonomics Science, 2019, 20, 332-365.	1.8	29
61	Beyond mere take-over requests: The effects of monitoring requests on driver attention, take-over performance, and acceptance. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 63, 22-37.	3.7	54
62	External Human-Machine Interfaces on Automated Vehicles: Effects on Pedestrian Crossing Decisions. Human Factors, 2019, 61, 1353-1370.	3.5	204
63	What will the car driver do? A video-based questionnaire study on cyclists' anticipation during safety-critical situations. Journal of Safety Research, 2019, 69, 11-21.	3.6	11
64	How Do eHMIs Affect Pedestrians' Crossing Behavior? A Study Using a Head-Mounted Display Combined with a Motion Suit. Information (Switzerland), 2019, 10, 386.	2.9	38
65	Continuous auditory feedback on the status of adaptive cruise control, lane deviation, and time headway: An acceptable support for truck drivers?. Acoustical Science and Technology, 2019, 40, 382-390.	0.5	4
66	Survey on eHMI concepts: The effect of text, color, and perspective. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 67, 175-194.	3.7	99
67	Rolling Out the Red (and Green) Carpet: Supporting Driver Decision Making in Automation-to-Manual Transitions. IEEE Transactions on Human-Machine Systems, 2019, 49, 20-31.	3.5	64
68	Situation awareness based on eye movements in relation to the task environment. Cognition, Technology and Work, 2019, 21, 99-111.	3.0	69
69	A human factors perspective on automated driving. Theoretical Issues in Ergonomics Science, 2019, 20, 223-249.	1.8	177
70	Visual Sampling Processes Revisited: Replicating and Extending Senders (1983) Using Modern Eye-Tracking Equipment. IEEE Transactions on Human-Machine Systems, 2018, 48, 526-540.	3.5	24
71	The effect of steering-system linearity, simulator motion, and truck driving experience on steering of an articulated tractor-semitrailer combination. Applied Ergonomics, 2018, 71, 17-28.	3.1	17
72	What determines drivers' speed? A replication of three behavioural adaptation experiments in a single driving simulator study. Ergonomics, 2018, 61, 966-987.	2.1	20

#	Article	IF	CITATIONS
73	The 4D LINT Model of Function Allocation: Spatial-Temporal Arrangement and Levels of Automation. Advances in Intelligent Systems and Computing, 2018, , 29-34.	0.6	4
74	Take-over requests in highly automated driving: A crowdsourcing survey on auditory, vibrotactile, and visual displays. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 56, 82-98.	3.7	98
75	Blind Driving by Means of a Steering-Based Predictor Algorithm. Advances in Intelligent Systems and Computing, 2018, , 457-466.	0.6	Ο
76	The Design of a Vibrotactile Seat for Conveying Take-Over Requests in Automated Driving. Advances in Intelligent Systems and Computing, 2018, , 618-630.	0.6	6
77	Modelling the Dynamics of Driver Situation Awareness in Automated Driving. Advances in Intelligent Systems and Computing, 2018, , 643-649.	0.6	0
78	Validity and reliability of naturalistic driving scene categorization Judgments from crowdsourcing. Accident Analysis and Prevention, 2018, 114, 25-33.	5.7	6
79	Cyclists' eye movements and crossing judgments at uncontrolled intersections: An eye-tracking study using animated video clips. Accident Analysis and Prevention, 2018, 120, 270-280.	5.7	14
80	Crowdsourced Measurement of Reaction Times to Audiovisual Stimuli With Various Degrees of Asynchrony. Human Factors, 2018, 60, 1192-1206.	3.5	16
81	Interaction between pedestrians and automated vehicles: A Wizard of Oz experiment. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 58, 1005-1020.	3.7	114
82	A toolbox for automated driving on the STISIM driving simulator. MethodsX, 2018, 5, 1073-1088.	1.6	8
83	Acceptance of Driverless Vehicles: Results from a Large Cross-National Questionnaire Study. Journal of Advanced Transportation, 2018, 2018, 1-22.	1.7	200
84	Effects of mental demands on situation awareness during platooning: A driving simulator study. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 58, 193-209.	3.7	30
85	A Topology of Shared Control Systems—Finding Common Ground in Diversity. IEEE Transactions on Human-Machine Systems, 2018, 48, 509-525.	3.5	134
86	User acceptance of automated shuttles in Berlin-Schöneberg: A questionnaire study. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 58, 843-854.	3.7	166
87	A gesture-based design tool: Assessing 2DOF vs. 4DOF steerable instrument control. PLoS ONE, 2018, 13, e0199367.	2.5	2
88	The relationship between the Driver Behavior Questionnaire, Sensation Seeking Scale, and recorded crashes: A brief comment on Martinussen et al. (2017) and new data from SHRP2. Accident Analysis and Prevention, 2018, 118, 54-56.	5.7	17
89	Adaptive automation: automatically (dis)engaging automation during visually distracted driving. PeerJ Computer Science, 2018, 4, e166.	4.5	10
90	Comparing spatially static and dynamic vibrotactile take-over requests in the driver seat. Accident Analysis and Prevention, 2017, 99, 218-227.	5.7	94

#	Article	IF	CITATIONS
91	Pleasure in using adaptive cruise control: A questionnaire study in The Netherlands. Traffic Injury Prevention, 2017, 18, 216-224.	1.4	10
92	Driving Characteristics and Adaptive Cruise Control ? A Naturalistic Driving Study. IEEE Intelligent Transportation Systems Magazine, 2017, 9, 17-24.	3.8	27
93	Analyzing crowdsourced ratings of speech-based take-over requests for automated driving. Applied Ergonomics, 2017, 64, 56-64.	3.1	32
94	Take-over again: Investigating multimodal and directional TORs to get the driver back into the loop. Applied Ergonomics, 2017, 62, 204-215.	3.1	177
95	A Laparoscopic Morcellator Redesign to Constrain Tissue Using Integrated Gripping Teeth. Journal of Medical Devices, Transactions of the ASME, 2017, 11, .	0.7	1
96	How much time do drivers need to obtain situation awareness? A laboratory-based study of automated driving. Applied Ergonomics, 2017, 60, 293-304.	3.1	104
97	Does haptic steering guidance instigate speeding? A driving simulator study into causes and remedies. Accident Analysis and Prevention, 2017, 98, 372-387.	5.7	22
98	Concurrent audio-visual feedback for supporting drivers at intersections: A study using two linked driving simulators. Applied Ergonomics, 2017, 60, 30-42.	3.1	29
99	Effects of platooning on signal-detection performance, workload, and stress: A driving simulator study. Applied Ergonomics, 2017, 60, 116-127.	3.1	52
100	Driver response times to auditory, visual, and tactile take-over requests: A simulator study with 101 participants. , 2017, , .		54
101	A human-like steering model: Sensitive to uncertainty in the environment. , 2017, , .		4
102	Differences between racing and non-racing drivers: A simulator study using eye-tracking. PLoS ONE, 2017, 12, e0186871.	2.5	39
103	Towards a Real-Time Driver Workload Estimator: An On-the-Road Study. Advances in Intelligent Systems and Computing, 2017, , 1151-1164.	0.6	2
104	Publishing. SpringerBriefs in Applied Sciences and Technology, 2017, , 67-97.	0.4	0
105	Scientific Method, Human Research Ethics, and Biosafety/Biosecurity. SpringerBriefs in Applied Sciences and Technology, 2017, , 1-16.	0.4	1
106	Eye-based driver state monitor of distraction, drowsiness, and cognitive load for transitions of control in automated driving. , 2016, , .		3
107	Object-alignment performance in a head-mounted display versus a monitor. , 2016, , .		0
108	Blind driving by means of auditory feedback. IFAC-PapersOnLine, 2016, 49, 525-530.	0.9	3

#	Article	IF	CITATIONS
109	Sonifying the location of an object: A comparison of three methods. IFAC-PapersOnLine, 2016, 49, 531-536.	0.9	4
110	Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data Psychological Methods, 2016, 21, 273-290.	3.5	465
111	The effects of time pressure on driver performance and physiological activity: A driving simulator study. Transportation Research Part F: Traffic Psychology and Behaviour, 2016, 41, 150-169.	3.7	80
112	Riding performance on a conventional bicycle and a pedelec in low speed exercises: Objective and subjective evaluation of middle-aged and older persons. Transportation Research Part F: Traffic Psychology and Behaviour, 2016, 42, 28-43.	3.7	31
113	The effects of driving with different levels of unreliable automation on self-reported workload and secondary task performance. International Journal of Vehicle Design, 2016, 70, 297.	0.3	38
114	Human factors of transitions in automated driving: A general framework and literature survey. Transportation Research Part F: Traffic Psychology and Behaviour, 2016, 43, 183-198.	3.7	137
115	From Mackworth's clock to the open road: A literature review on driver vigilance task operationalization. Transportation Research Part F: Traffic Psychology and Behaviour, 2016, 40, 169-189.	3.7	20
116	National correlates of self-reported traffic violations across 41 countries. Personality and Individual Differences, 2016, 98, 145-152.	2.9	32
117	Common Factor Analysis versus Principal Component Analysis: A Comparison of Loadings by Means of Simulations. Communications in Statistics Part B: Simulation and Computation, 2016, 45, 299-321.	1.2	49
118	Vibrotactile Displays: A Survey With a View on Highly Automated Driving. IEEE Transactions on Intelligent Transportation Systems, 2016, 17, 897-907.	8.0	93
119	Psychological constructs in driving automation: a consensus model and critical comment on construct proliferation. Theoretical Issues in Ergonomics Science, 2016, 17, 284-303.	1.8	35
120	Supplemental Material for Comparing the Pearson and Spearman Correlation Coefficients Across Distributions and Sample Sizes: A Tutorial Using Simulations and Empirical Data. Psychological Methods, 2016, , .	3.5	5
121	Using CrowdFlower to Study the Relationship between Self-reported Violations and Traffic Accidents. Procedia Manufacturing, 2015, 3, 2518-2525.	1.9	32
122	An International Crowdsourcing Study into People's Statements on Fully Automated Driving. Procedia Manufacturing, 2015, 3, 2534-2542.	1.9	63
123	A Review and Framework of Control Authority Transitions in Automated Driving. Procedia Manufacturing, 2015, 3, 2510-2517.	1.9	43
124	Reflections on the 1951 Fitts List: Do Humans Believe Now that Machines Surpass them?. Procedia Manufacturing, 2015, 3, 5334-5341.	1.9	22
125	Robust Hand Motion Tracking through Data Fusion of 5DT Data Clove and Nimble VR Kinect Camera Measurements. Sensors, 2015, 15, 31644-31671.	3.8	30
126	The Effect of Haptic Support Systems on Driver Performance: A Literature Survey. IEEE Transactions on Haptics, 2015, 8, 467-479.	2.7	91

#	Article	IF	CITATIONS
127	Review of Eye-related Measures of Drivers' Mental Workload. Procedia Manufacturing, 2015, 3, 2854-2861.	1.9	156
128	Public opinion on automated driving: Results of an international questionnaire among 5000 respondents. Transportation Research Part F: Traffic Psychology and Behaviour, 2015, 32, 127-140.	3.7	912
129	Measuring drivers' visual information needs during braking: A simulator study using a screen-occlusion method. Transportation Research Part F: Traffic Psychology and Behaviour, 2015, 33, 48-65.	3.7	17
130	On the paradoxical decrease of self-reported cognitive failures with age. Ergonomics, 2015, 58, 1471-1486.	2.1	25
131	Should Drivers Be Operating Within an Automation-Free Bandwidth? Evaluating Haptic Steering Support Systems With Different Levels of Authority. Human Factors, 2015, 57, 5-20.	3.5	54
132	Effects of visual fidelity on curve negotiation, gaze behaviour and simulator discomfort. Ergonomics, 2015, 58, 1347-1364.	2.1	13
133	A quarter of a century of the DBQ: some supplementary notes on its validity with regard to accidents. Ergonomics, 2015, 58, 1745-1769.	2.1	56
134	Agreement between self-reported and registered colorectal cancer screening: a meta-analysis. European Journal of Cancer Care, 2015, 24, 286-298.	1.5	22
135	Changes of Driving Performance and Gaze Behavior of Novice drivers During a 30-min Simulator-based Training. Procedia Manufacturing, 2015, 3, 3325-3332.	1.9	33
136	The relationship between tweets, citations, and article views for PLOS ONE articles. Scientometrics, 2015, 102, 1773-1779.	3.0	96
137	A surge of <i>p</i> -values between 0.041 and 0.049 in recent decades (but negative results are) Tj ETQq1 1 0.78	4314 rgBT 2.0	- /Qyerlock 1
138	A Quarter of a Century of the DBQ: Some Supplementary Notes on its Validity with Regard to Accidents. SSRN Electronic Journal, 2014, , .	0.4	0
139	Road-Departure Prevention in an Emergency Obstacle Avoidance Situation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014, 44, 621-629.	9.3	37
140	Effects of adaptive cruise control and highly automated driving on workload and situation awareness: A review of the empirical evidence. Transportation Research Part F: Traffic Psychology and Behaviour, 2014, 27, 196-217.	3.7	511
141	Vertical field of view restriction in driver training: A simulator-based evaluation. Transportation Research Part F: Traffic Psychology and Behaviour, 2014, 24, 169-182.	3.7	18
142	The expansion of Google Scholar versus Web of Science: a longitudinal study. Scientometrics, 2014, 98, 1547-1565.	3.0	200
143	Why the Fitts list has persisted throughout the history of function allocation. Cognition, Technology and Work, 2014, 16, 1-11.	3.0	87
144	Social desirability is the same in offline, online, and paper surveys: A meta-analysis. Computers in Human Behavior, 2014, 36, 487-495.	8.5	202

#	Article	IF	CITATIONS
145	Why person models are important for human factors science. Theoretical Issues in Ergonomics Science, 2014, 15, 595-614.	1.8	8
146	Controversy in human factors constructs and the explosive use of the NASA-TLX: a measurement perspective. Cognition, Technology and Work, 2014, 16, 289-297.	3.0	56
147	Predicting self-reported violations among novice license drivers using pre-license simulator measures. Accident Analysis and Prevention, 2013, 52, 71-79.	5.7	32
148	Small sample sizes, overextraction, and unrealistic expectations: A commentary on M. Mattsson. Accident Analysis and Prevention, 2013, 50, 776-777.	5.7	5
149	Enhancing Driver Car-Following Performance with a Distance and Acceleration Display. IEEE Transactions on Human-Machine Systems, 2013, 43, 8-16.	3.5	29
150	Why Selective Publication of Statistically Significant Results Can Be Effective. PLoS ONE, 2013, 8, e66463.	2.5	32
151	Obstacle Avoidance, Visual Detection Performance, and Eye-Scanning Behavior of Glaucoma Patients in a Driving Simulator: A Preliminary Study. PLoS ONE, 2013, 8, e77294.	2.5	55
152	Investigating the Effect of a Visual Search Task for Simulator-Based Driver Training. , 2013, , .		3
153	Factor recovery by principal axis factoring and maximum likelihood factor analysis as a function of factor pattern and sample size. Journal of Applied Statistics, 2012, 39, 695-710.	1.3	210
154	Modelling driver behaviour: a rationale for multivariate statistics. Theoretical Issues in Ergonomics Science, 2012, 13, 528-545.	1.8	14
155	Automated Driving: Human-Factors Issues and Design Solutions. Proceedings of the Human Factors and Ergonomics Society, 2012, 56, 2296-2300.	0.3	92
156	Why do drivers maintain short headways in fog? A driving-simulator study evaluating feeling of risk and lateral control during automated and manual car following. Ergonomics, 2012, 55, 971-985.	2.1	54
157	Training Effectiveness of Whole Body Flight Simulator Motion: A Comprehensive Meta-Analysis. The International Journal of Aviation Psychology, 2012, 22, 164-183.	0.7	37
158	Driving simulator parameterization using double-lane change steering metrics as recorded on five modern cars. Simulation Modelling Practice and Theory, 2012, 26, 96-112.	3.8	23
159	The effect of tire grip on learning driving skill and driving style: A driving simulator study. Transportation Research Part F: Traffic Psychology and Behaviour, 2012, 15, 413-426.	3.7	26
160	The effects of control-display gain on performance of race car drivers in an isometric braking task. Journal of Sports Sciences, 2012, 30, 1747-1756.	2.0	9
161	The Relationship Between Distal and Proximal Colonic Neoplasia: A Meta-Analysis. Journal of General Internal Medicine, 2012, 27, 361-370.	2.6	17
162	Relationship Between Distal and Proximal Neoplasia. Journal of General Internal Medicine, 2012, 27, 764-764.	2.6	0

#	Article	IF	CITATIONS
163	Training and assessment with a faster than real-time simulation of a drinking water treatment plant. Simulation Modelling Practice and Theory, 2012, 21, 52-64.	3.8	6
164	Response to commentary on "The Driver Behaviour Questionnaire as a predictor of accidents: A meta-analysis― Journal of Safety Research, 2012, 43, 85-90.	3.6	11
165	Response to second commentary on "The Driver Behaviour Questionnaire as a predictor of accidents: A meta-analysis― Journal of Safety Research, 2012, 43, 94-98.	3.6	8
166	Final response to the commentaries on "The Driver Behaviour Questionnaire as a predictor of accidents: A meta-analysisâ€: Journal of Safety Research, 2012, 43, 99.	3.6	1
167	On the way to pole position: The effect of tire grip on learning to drive a racecar. , 2011, , .		1
168	The Effect of Concurrent Bandwidth Feedback on Learning the Lane-Keeping Task in a Driving Simulator. Human Factors, 2011, 53, 50-62.	3.5	48
169	Mechanisms of temporary adhesion in benthic animals. Biological Reviews, 2011, 86, 15-32.	10.4	17
170	Car Racing in a Simulator: Validation and Assessment of Brake Pedal Stiffness. Presence: Teleoperators and Virtual Environments, 2011, 20, 47-61.	0.6	8
171	Nonvestibular Motion Cueing in a Fixed-Base Driving Simulator: Effects on Driver Braking and Cornering Performance. Presence: Teleoperators and Virtual Environments, 2011, 20, 117-142.	0.6	19
172	Shared control for road departure prevention. , 2011, , .		24
173	Preparing drivers for dangerous situations: A critical reflection on continuous shared control. , 2011, , .		55
174	Effects of Concurrent Continuous Visual Feedback on Learning the Lane Keeping Task. , 2011, , .		5
175	Objective classification of residents based on their psychomotor laparoscopic skills. Surgical Endoscopy and Other Interventional Techniques, 2010, 24, 1031-1039.	2.4	87
176	The Driver Behaviour Questionnaire as a predictor of accidents: A meta-analysis. Journal of Safety Research, 2010, 41, 463-470.	3.6	398
177	Relationships between driving simulator performance and driving test results. Ergonomics, 2009, 52, 137-153.	2.1	138
178	Exploratory Factor Analysis With Small Sample Sizes. Multivariate Behavioral Research, 2009, 44, 147-181.	3.1	666
179	Gender differences in driver's license theory test scores in the Netherlands. Journal of Safety Research, 2008, 39, 413-416.	3.6	1
180	Opportunities and challenges in improving surgical work flow. Cognition, Technology and Work, 2008, 10, 313-321.	3.0	11

#	Article	IF	CITATIONS
181	A Two-Dimensional Weighting Function for a Driver Assistance System. IEEE Transactions on Systems, Man, and Cybernetics, 2008, 38, 189-195.	5.0	20
182	Advancing simulation-based driver training. , 2008, , .		6
183	Violations and errors during simulation-based driver training. Ergonomics, 2007, 50, 138-158.	2.1	43
184	Weighted two-dimensional longitudinal impedance for driving support system. , 0, , .		3
185	Using Crowdflower to Study the Relationship between Self-Reported Violations and Traffic Accidents. SSRN Electronic Journal, 0, , .	0.4	4
186	Auditory interfaces in automated driving: an international survey. PeerJ Computer Science, 0, 1, e13.	4.5	56
187	Workload assessment for mental arithmetic tasks using the task-evoked pupillary response. PeerJ Computer Science $0, 1, e16$	4.5	29