David Painemal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3008717/publications.pdf Version: 2024-02-01

ΠΑΥΙΟ ΡΑΙΝΕΜΑΙ

#	Article	IF	CITATIONS
1	Remote Sensing of Droplet Number Concentration in Warm Clouds: A Review of the Current State of Knowledge and Perspectives. Reviews of Geophysics, 2018, 56, 409-453.	23.0	185
2	Assessment of MODIS cloud effective radius and optical thickness retrievals over the Southeast Pacific with VOCALS-REx in situ measurements. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	177
3	Stratocumulus Cloud-Top Height Estimates and Their Climatic Implications. Journal of Climate, 2009, 22, 4652-4666.	3.2	116
4	CERES MODIS Cloud Product Retrievals for Edition 4—Part I: Algorithm Changes. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 2744-2780.	6.3	75
5	Aerosol–Cloud–Meteorology Interaction Airborne Field Investigations: Using Lessons Learned from the U.S. West Coast in the Design of ACTIVATE off the U.S. East Coast. Bulletin of the American Meteorological Society, 2019, 100, 1511-1528.	3.3	51
6	Microphysical variability in southeast Pacific Stratocumulus clouds: synoptic conditions and radiative response. Atmospheric Chemistry and Physics, 2010, 10, 6255-6269.	4.9	50
7	Boundary layer regulation in the southeast Atlantic cloud microphysics during the biomass burning season as seen by the Aâ€ŧrain satellite constellation. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,288.	3.3	49
8	The first aerosol indirect effect quantified through airborne remote sensing during VOCALS-REx. Atmospheric Chemistry and Physics, 2013, 13, 917-931.	4.9	39
9	GOESâ€10 microphysical retrievals in marine warm clouds: Multiâ€instrument validation and daytime cycle over the southeast Pacific. Journal of Geophysical Research, 2012, 117, .	3.3	36
10	Atmospheric Research Over the Western North Atlantic Ocean Region and North American East Coast: A Review of Past Work and Challenges Ahead. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031626.	3.3	35
11	The Diurnal Cycle of Cloud-Top Height and Cloud Cover over the Southeastern Pacific as Observed by GOES-10. Journals of the Atmospheric Sciences, 2013, 70, 2393-2408.	1.7	30
12	The impact of horizontal heterogeneities, cloud fraction, and liquid water path on warm cloud effective radii from CERES-like Aqua MODIS retrievals. Atmospheric Chemistry and Physics, 2013, 13, 9997-10003.	4.9	30
13	Southeast Pacific Stratocumulus: High-Frequency Variability and Mesoscale Structures over San Félix Island. Journal of Applied Meteorology and Climatology, 2010, 49, 463-477.	1.5	29
14	An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast—Part 2: Circulation, Boundary Layer, and Clouds. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033423.	3.3	26
15	Mean Structure and Diurnal Cycle of Southeast Atlantic Boundary Layer Clouds: Insights from Satellite Observations and Multiscale Modeling Framework Simulations. Journal of Climate, 2015, 28, 324-341.	3.2	25
16	Cloud occurrences and cloud radiative effects (CREs) from CERESâ€CALIPSOâ€CloudSatâ€MODIS (CCCM) and CloudSat radarâ€lidar (RL) products. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8852-8884.	3.3	24
17	Modeled and observed properties related to the direct aerosol radiative effect of biomass burning aerosol over the southeastern Atlantic. Atmospheric Chemistry and Physics, 2022, 22, 1-46.	4.9	22
18	Cloud drop number concentrations over the western North Atlantic Ocean: seasonal cycle, aerosol interrelationships, and other influential factors. Atmospheric Chemistry and Physics, 2021, 21, 10499-10526.	4.9	20

DAVID PAINEMAL

#	Article	IF	CITATIONS
19	On Assessing ERA5 and MERRA2 Representations of Coldâ€Air Outbreaks Across the Gulf Stream. Geophysical Research Letters, 2021, 48, e2021GL094364.	4.0	19
20	An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast – Part 1: Analysis of Aerosols, Gases, and Wet Deposition Chemistry. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD032592.	3.3	18
21	Aerosol variability, synopticâ€scale processes, and their link to the cloud microphysics over the northeast Pacific during MAGIC. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5122-5139.	3.3	17
22	Reducing uncertainties in satellite estimates of aerosol–cloud interactions over the subtropical ocean by integrating vertically resolved aerosol observations. Atmospheric Chemistry and Physics, 2020, 20, 7167-7177.	4.9	17
23	First extended validation of satellite microwave liquid water path with shipâ€based observations of marine low clouds. Geophysical Research Letters, 2016, 43, 6563-6570.	4.0	16
24	Evaluation of satellite retrievals of liquid clouds from the GOES-13 imager and MODIS over the midlatitude North Atlantic during the NAAMES campaign. Atmospheric Measurement Techniques, 2021, 14, 6633-6646.	3.1	16
25	Aerosol and cloud microphysics covariability in the northeast Pacific boundary layer estimated with shipâ€based and satellite remote sensing observations. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2403-2418.	3.3	15
26	The impact of sampling strategy on the cloud droplet number concentration estimated from satellite data. Atmospheric Measurement Techniques, 2022, 15, 3875-3892.	3.1	15
27	Global Estimates of Changes in Shortwave Lowâ€Cloud Albedo and Fluxes Due to Variations in Cloud Droplet Number Concentration Derived From CERESâ€MODIS Satellite Sensors. Geophysical Research Letters, 2018, 45, 9288-9296.	4.0	14
28	Planning the Next Decade of Coordinated Research to Better Understand and Simulate Marine Low Clouds. Bulletin of the American Meteorological Society, 2016, 97, 1699-1702.	3.3	13
29	Novel aerosol extinction coefficients and lidar ratios over the ocean from CALIPSO–CloudSat: evaluation and global statistics. Atmospheric Measurement Techniques, 2019, 12, 2201-2217.	3.1	13
30	An Aerosol Climatology and Implications for Clouds at a Remote Marine Site: Case Study Over Bermuda. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034038.	3.3	12
31	On the dependence of albedo on cloud microphysics over marine stratocumulus clouds regimes determined from Clouds and the Earth's Radiant Energy System (CERES) data. Journal of Geophysical Research, 2012, 117, .	3.3	11
32	Biomass Burning Over the United States East Coast and Western North Atlantic Ocean: Implications for Clouds and Air Quality. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034916.	3.3	10
33	Large-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-Air Outbreaks during the ACTIVATE Campaign. Part I: Case Setup and Sensitivities to Large-Scale Forcings. Journals of the Atmospheric Sciences, 2022, 79, 73-100.	1.7	8
34	Entrainment rate diurnal cycle in marine stratiform clouds estimated from geostationary satellite retrievals and a meteorological forecast model. Geophysical Research Letters, 2017, 44, 7482-7489.	4.0	6
35	Correction to "On the dependence of albedo on cloud microphysics over marine stratocumulus clouds regimes determined from Clouds and the Earth's Radiant Energy System (CERES) data― Journal of Geophysical Research, 2012, 117, n/a-n/a.	3.3	1