Stephen B Pope

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/300865/publications.pdf Version: 2024-02-01

STEDHEN R DODE

#	Article	IF	CITATIONS
1	Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Combustion and Flame, 1992, 88, 239-264.	2.8	1,283
2	Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 2004, 6, 35-35.	1.2	830
3	A more general effective-viscosity hypothesis. Journal of Fluid Mechanics, 1975, 72, 331.	1.4	714
4	An examination of forcing in direct numerical simulations of turbulence. Computers and Fluids, 1988, 16, 257-278.	1.3	563
5	An explanation of the turbulent round-jet/plane-jet anomaly. AIAA Journal, 1978, 16, 279-281.	1.5	540
6	Direct numerical simulations of the turbulent mixing of a passive scalar. Physics of Fluids, 1988, 31, 506.	1.4	448
7	Lagrangian statistics from direct numerical simulations of isotropic turbulence. Journal of Fluid Mechanics, 1989, 207, 531-586.	1.4	448
8	The evolution of surfaces in turbulence. International Journal of Engineering Science, 1988, 26, 445-469.	2.7	407
9	A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees. Combustion and Flame, 1998, 115, 487-514.	2.8	370
10	Filtered mass density function for large-eddy simulation of turbulent reacting flows. Journal of Fluid Mechanics, 1999, 401, 85-121.	1.4	302
11	An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. Journal of Computational Physics, 1988, 79, 373-416.	1.9	290
12	A generalized Langevin model for turbulent flows. Physics of Fluids, 1986, 29, 387.	1.4	282
13	Small scales, many species and the manifold challenges of turbulent combustion. Proceedings of the Combustion Institute, 2013, 34, 1-31.	2.4	267
14	PDF calculations of turbulent nonpremixed flames with local extinction. Combustion and Flame, 2000, 123, 281-307.	2.8	244
15	Material-element deformation in isotropic turbulence. Journal of Fluid Mechanics, 1990, 220, 427-458.	1.4	182
16	The probability approach to the modelling of turbulent reacting flows. Combustion and Flame, 1976, 27, 299-312.	2.8	173
17	A Hybrid Algorithm for the Joint PDF Equation of Turbulent Reactive Flows. Journal of Computational Physics, 2001, 166, 218-252.	1.9	169
18	Turbulent Premixed Flames. Annual Review of Fluid Mechanics, 1987, 19, 237-270.	10.8	156

#	Article	IF	CITATIONS
19	Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations. Combustion and Flame, 2005, 142, 438-453.	2.8	154
20	The calculation of near-wake flows. Journal of Fluid Mechanics, 1976, 73, 9-32.	1.4	151
21	A Consistent Hybrid Finite-Volume/Particle Method for the PDF Equations of Turbulent Reactive Flows. Journal of Computational Physics, 1999, 154, 342-371.	1.9	146
22	Universal Intermittent Properties of Particle Trajectories in Highly Turbulent Flows. Physical Review Letters, 2008, 100, 254504.	2.9	145
23	An Improved Turbulent Mixing Model. Combustion Science and Technology, 1982, 28, 131-145.	1.2	143
24	The velocityâ€dissipation probability density function model for turbulent flows. Physics of Fluids A, Fluid Dynamics, 1990, 2, 1437-1449.	1.6	141
25	An investigation of the accuracy of manifold methods and splitting schemes in the computational implementation of combustion chemistry. Combustion and Flame, 1998, 112, 16-32.	2.8	136
26	The Hybrid Method for the PDF Equations of Turbulent Reactive Flows: Consistency Conditions and Correction Algorithms. Journal of Computational Physics, 2001, 172, 841-878.	1.9	136
27	Straining and scalar dissipation on material surfaces in turbulence: Implications for flamelets. Combustion and Flame, 1990, 79, 340-365.	2.8	128
28	Probability density function calculations of local extinction and no production in piloted-jet turbulent methane/air flames. Proceedings of the Combustion Institute, 2000, 28, 133-139.	2.4	126
29	An improved algorithm for in situ adaptive tabulation. Journal of Computational Physics, 2009, 228, 361-386.	1.9	125
30	Calculations of premixed turbulent flames by PDF methods. Combustion and Flame, 1987, 67, 127-142.	2.8	121
31	The calculation of turbulent recirculating flows in general orthogonal coordinates. Journal of Computational Physics, 1978, 26, 197-217.	1.9	120
32	The influence of chemical mechanisms on PDF calculations of nonpremixed piloted jet flamesâ~†. Combustion and Flame, 2005, 143, 450-470.	2.8	116
33	A diffusion model for velocity gradients in turbulence. Physics of Fluids A, Fluid Dynamics, 1990, 2, 242-256.	1.6	114
34	Transport budgets in turbulent lifted flames of methane autoigniting in a vitiated co-flow. Combustion and Flame, 2007, 151, 495-511.	2.8	113
35	A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow. Combustion Theory and Modelling, 2007, 11, 351-376.	1.0	110
36	A particle formulation for treating differential diffusion in filtered density function methods. Journal of Computational Physics, 2007, 226, 947-993.	1.9	109

#	Article	IF	CITATIONS
37	The effect of mixing models in PDF calculations of piloted jet flames. Proceedings of the Combustion Institute, 2007, 31, 1543-1550.	2.4	100
38	A pdf modeling study of self-similar turbulent free shear flows. Physics of Fluids, 1987, 30, 1026.	1.4	97
39	Consistent modeling of scalars in turbulent flows. Physics of Fluids, 1983, 26, 404.	1.4	96
40	Transport equation for the joint probability density function of velocity and scalars in turbulent flow. Physics of Fluids, 1981, 24, 588.	1.4	93
41	Assessment of Numerical Accuracy of PDF/Monte Carlo Methods for Turbulent Reacting Flows. Journal of Computational Physics, 1999, 152, 192-230.	1.9	93
42	Large eddy simulation/probability density function modeling of a turbulent <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si195.gif" overflow="scroll"><mml:mrow><mml:msub><mml:mrow><mml:mtext>CH</mml:mtext></mml:mrow><mml:m Proceedings of the Combustion Institute, 2011, 33, 1319-1330.</mml:m </mml:msub></mml:mrow></mml:math 	nrow2:4 mm	l:mn>4
43	An investigation of the performance of turbulent mixing models. Combustion and Flame, 2004, 136, 208-216.	2.8	89
44	The invariant constrained equilibrium edge preimage curve method for the dimension reduction of chemical kinetics. Journal of Chemical Physics, 2006, 124, 114111.	1.2	87
45	Probability density function and Reynoldsâ€stress modeling of nearâ€wall turbulent flows. Physics of Fluids, 1997, 9, 154-163.	1.6	86
46	The vanishing effect of molecular diffusivity on turbulent dispersion: implications for turbulent mixing and the scalar flux. Journal of Fluid Mechanics, 1998, 359, 299-312.	1.4	83
47	An analysis of the structure of an n-dodecane spray flame using TPDF modelling. Combustion and Flame, 2016, 168, 420-435.	2.8	82
48	PDF modeling of a bluff-body stabilized turbulent flame. Combustion and Flame, 2003, 132, 115-137.	2.8	77
49	Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows. Physics of Fluids, 2014, 26, .	1.6	72
50	Simple models of turbulent flows. Physics of Fluids, 2011, 23, .	1.6	70
51	Consistency conditions for random-walk models of turbulent dispersion. Physics of Fluids, 1987, 30, 2374.	1.4	69
52	The curvature of material surfaces in isotropic turbulence. Physics of Fluids A, Fluid Dynamics, 1989, 1, 2010-2018.	1.6	69
53	Operator-splitting with ISAT to model reacting flow with detailed chemistry. Combustion Theory and Modelling, 2006, 10, 199-217.	1.0	69
54	Calculations of bluff-body stabilized flames using a joint probability density function model with detailed chemistry. Combustion and Flame, 2005, 141, 89-117.	2.8	68

#	Article	IF	CITATIONS
55	Stationary probability density functions: An exact result. Physics of Fluids A, Fluid Dynamics, 1993, 5, 1529-1531.	1.6	67
56	Large-eddy simulation/probability density function modeling of a non-premixed CO/H2 temporally evolving jet flame. Proceedings of the Combustion Institute, 2013, 34, 1241-1249.	2.4	67
57	A deterministic forcing scheme for direct numerical simulations of turbulence. Computers and Fluids, 1998, 27, 11-28.	1.3	66
58	Second-order splitting schemes for a class of reactive systems. Journal of Computational Physics, 2008, 227, 8165-8176.	1.9	66
59	Treating chemistry in combustion with detailed mechanisms—In situ adaptive tabulation in principal directions—Premixed combustion. Combustion and Flame, 1998, 112, 85-112.	2.8	65
60	Probability density function/Monte Carlo simulation of near-wall turbulent flows. Journal of Fluid Mechanics, 1998, 357, 141-166.	1.4	64
61	Particle Method for Turbulent Flows: Integration of Stochastic Model Equations. Journal of Computational Physics, 1995, 117, 332-349.	1.9	62
62	Self-conditioned fields for large-eddy simulations of turbulent flows. Journal of Fluid Mechanics, 2010, 652, 139-169.	1.4	61
63	Exploiting ISAT to solve the reaction–diffusion equation. Combustion Theory and Modelling, 2004, 8, 361-383.	1.0	60
64	PDF calculations of piloted turbulent nonpremixed flames of methane. Combustion and Flame, 1990, 81, 13-29.	2.8	59
65	Stochastic Lagrangian models of velocity in homogeneous turbulent shear flow. Physics of Fluids, 2002, 14, 1696-1702.	1.6	59
66	A Lagrangian two-time probability density function equation for inhomogeneous turbulent flows. Physics of Fluids, 1983, 26, 3448.	1.4	56
67	Propagating surfaces in isotropic turbulence. Journal of Fluid Mechanics, 1992, 234, 247.	1.4	55
68	Combined dimension reduction and tabulation strategy using ISAT–RCCE–GALI for the efficient implementation of combustion chemistry. Combustion and Flame, 2011, 158, 2113-2127.	2.8	55
69	PDF Simulations of a Bluff-Body Stabilized Flow. Journal of Computational Physics, 2001, 169, 1-23.	1.9	54
70	Modeling of extinction in turbulent diffusion flames by the velocity-dissipation-composition PDF method. Combustion and Flame, 1995, 100, 211-220.	2.8	53
71	Application of the velocityâ€dissipation probability density function model to inhomogeneous turbulent flows. Physics of Fluids A, Fluid Dynamics, 1991, 3, 1947-1957.	1.6	52
72	Differential diffusion of passive scalars in isotropic turbulence. Physics of Fluids A, Fluid Dynamics, 1993, 5, 2467-2478.	1.6	52

#	Article	IF	CITATIONS
73	Comparison of mixing model performance for nonpremixed turbulent reactive flow. Combustion and Flame, 1999, 117, 732-754.	2.8	52
74	Implementation of combustion chemistry by in situ adaptive tabulation of rate-controlled constrained equilibrium manifolds. Proceedings of the Combustion Institute, 2002, 29, 1411-1417.	2.4	52
75	A model for turbulent mixing based on shadow-position conditioning. Physics of Fluids, 2013, 25, .	1.6	51
76	Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using a large-eddy simulation/probability density function method. Combustion Theory and Modelling, 2014, 18, 388-413.	1.0	51
77	Computational study of lean premixed turbulent flames using RANSPDF and LESPDF methods. Combustion Theory and Modelling, 2013, 17, 610-656.	1.0	50
78	In Situ Detailed Chemistry Calculations in Combustor Flow Analyses. Journal of Engineering for Gas Turbines and Power, 2001, 123, 747-756.	0.5	49
79	Simulation of Sandia Flame D Using Velocity-Scalar Filtered Density Function. AIAA Journal, 2010, 48, 1513-1522.	1.5	49
80	A stochastic Lagrangian model for acceleration in turbulent flows. Physics of Fluids, 2002, 14, 2360.	1.6	48
81	Turbulent mixing model based on ordered pairing. Combustion and Flame, 1991, 83, 27-42.	2.8	47
82	Gibbs function continuation for the stable computation of chemical equilibrium. Combustion and Flame, 2004, 139, 222-226.	2.8	47
83	The use of slow manifolds in reactive flows. Combustion and Flame, 2006, 147, 243-261.	2.8	47
84	Reduced description of reactive flows with tabulation of chemistry. Combustion Theory and Modelling, 2011, 15, 827-848.	1.0	43
85	Numerical implementation of mixing and molecular transport in LES/PDF studies of turbulent reacting flows. Journal of Computational Physics, 2011, 230, 6916-6957.	1.9	42
86	Comparative study of micromixing models in transported scalar PDF simulations of turbulent nonpremixed bluff body flames. Combustion and Flame, 2006, 146, 109-130.	2.8	41
87	A more accurate projection in the rate-controlled constrained-equilibrium method for dimension reduction of combustion chemistry. Combustion Theory and Modelling, 2004, 8, 255-279.	1.0	40
88	Lagrangian investigation of local extinction, re-ignition and auto-ignition in turbulent flames. Combustion Theory and Modelling, 2008, 12, 857-882.	1.0	40
89	Weak second-order splitting schemes for Lagrangian Monte Carlo particle methods for the composition PDF/FDF transport equations. Journal of Computational Physics, 2010, 229, 1852-1878.	1.9	40
90	Empirical low-dimensional manifolds in composition space. Combustion and Flame, 2013, 160, 1967-1980.	2.8	40

#	Article	IF	CITATIONS
91	Large-scale parallel simulations of turbulent combustion using combined dimension reduction and tabulation of chemistry. Proceedings of the Combustion Institute, 2013, 34, 205-215.	2.4	40
92	PDF Model Calculations of Compressible Turbulent Flows Using Smoothed Particle Hydrodynamics. Journal of Computational Physics, 1997, 134, 150-168.	1.9	39
93	Lagrangian conditional statistics, acceleration and local relative motion in numerically simulated isotropic turbulence. Journal of Fluid Mechanics, 2007, 582, 399-422.	1.4	39
94	A greedy algorithm for species selection in dimension reduction of combustion chemistry. Combustion Theory and Modelling, 2010, 14, 619-652.	1.0	39
95	Nonpremixed turbulent reacting flow near extinction. Combustion and Flame, 1995, 101, 501-528.	2.8	38
96	Computationally efficient implementation of combustion chemistry in parallel PDF calculations. Journal of Computational Physics, 2009, 228, 5490-5525.	1.9	38
97	Large eddy simulation/probability density function simulations of the Cambridge turbulent stratified flame series. Combustion and Flame, 2019, 199, 24-45.	2.8	38
98	Calculations of a Plane Turbulent Jet. AIAA Journal, 1984, 22, 896-904.	1.5	37
99	Modelling effects of subgrid-scale mixture fraction variance in LES of a piloted diffusion flame. Combustion Theory and Modelling, 2012, 16, 611-638.	1.0	37
100	Species reconstruction using pre-image curves. Proceedings of the Combustion Institute, 2005, 30, 1293-1300.	2.4	36
101	Modeling unsteady reacting flow with operator splitting and ISAT. Combustion and Flame, 2006, 147, 150-162.	2.8	36
102	Molecular diffusion effects in LES of a piloted methane–air flame. Combustion and Flame, 2011, 158, 240-254.	2.8	36
103	Efficient Implementation of Chemistry in Computational Combustion. Flow, Turbulence and Combustion, 2009, 82, 437-453.	1.4	35
104	Monte Carlo Calculations of Turbulent Diffusion Flames. Combustion Science and Technology, 1984, 42, 13-45.	1.2	34
105	PDF simulations of turbulent combustion incorporating detailed chemistry. Combustion and Flame, 1999, 117, 340-350.	2.8	34
106	Experimental study of velocity filtered joint density function for large eddy simulation. Physics of Fluids, 2004, 16, 3599-3613.	1.6	34
107	PDF calculations of piloted premixed jet flames. Combustion Theory and Modelling, 2011, 15, 245-266.	1.0	34
108	Application of the ICE-PIC method for the dimension reduction of chemical kinetics coupled with transport. Proceedings of the Combustion Institute, 2007, 31, 473-481.	2.4	33

#	Article	IF	CITATIONS
109	PDF calculations of major and minor species in a turbulent piloted jet flame. Proceedings of the Combustion Institute, 1998, 27, 1081-1086.	0.3	32
110	Simulations of a turbulent non-premixed flame using combined dimension reduction and tabulation for combustion chemistry. Fuel, 2013, 105, 636-644.	3.4	32
111	A pre-partitioned adaptive chemistry methodology for the efficient implementation of combustion chemistry in particle PDF methods. Combustion and Flame, 2015, 162, 3236-3253.	2.8	32
112	Monte Carlo solutions of a joint PDF equation for turbulent flows in general orthogonal coordinates. Journal of Computational Physics, 1987, 72, 311-346.	1.9	31
113	An investigation of turbulent premixed counterflow flames using large-eddy simulations and probability density function methods. Combustion and Flame, 2016, 166, 229-242.	2.8	31
114	Specific volume coupling and convergence properties in hybrid particle/finite volume algorithms for turbulent reactive flows. Journal of Computational Physics, 2015, 294, 110-126.	1.9	30
115	Assessment of a partial-equilibrium/monte carlo model for turbulent syngas flames. Combustion and Flame, 1988, 72, 159-173.	2.8	29
116	A conditionally cubic-Gaussian stochastic Lagrangian model for acceleration in isotropic turbulence. Journal of Fluid Mechanics, 2007, 582, 423-448.	1.4	29
117	Wall-function treatment in pdf methods for turbulent flows. Physics of Fluids, 1997, 9, 2692-2703.	1.6	28
118	Numerical integration of stochastic differential equations: weak second-order mid-point scheme for application in the composition PDF method. Journal of Computational Physics, 2003, 185, 194-212.	1.9	28
119	The parabolic edge reconstruction method (PERM) for Lagrangian particle advection. Journal of Computational Physics, 2008, 227, 5447-5491.	1.9	28
120	Turbulent dispersion from line sources in grid turbulence. Physics of Fluids, 2008, 20, .	1.6	28
121	Large eddy simulation/probability density function simulations of bluff body stabilized flames. Combustion and Flame, 2014, 161, 3100-3133.	2.8	28
122	The performance ofin situadaptive tabulation in computations of turbulent flames. Combustion Theory and Modelling, 2005, 9, 549-568.	1.0	27
123	Computationally-efficient and scalable parallel implementation of chemistry in simulations of turbulent combustion. Combustion and Flame, 2012, 159, 3096-3109.	2.8	27
124	A study of the rate-controlled constrained-equilibrium dimension reduction method and its different implementations. Combustion Theory and Modelling, 2013, 17, 260-293.	1.0	27
125	PDF calculations of turbulent nonpremixed flames of using reduced chemical mechanisms. Combustion and Flame, 1993, 95, 133-150.	2.8	25
126	Transport-chemistry coupling in the reduced description of reactive flows. Combustion Theory and Modelling, 2007, 11, 715-739.	1.0	25

#	Article	IF	CITATIONS
127	Effects of molecular transport in LES/PDF of piloted turbulent dimethyl ether/air jet flames. Combustion and Flame, 2017, 176, 451-461.	2.8	25
128	Time-averaging strategies in the finite-volume/particle hybrid algorithm for the joint PDF equation of turbulent reactive flows. Combustion Theory and Modelling, 2008, 12, 529-544.	1.0	24
129	LES/PDF for premixed combustion in the DNS limit. Combustion Theory and Modelling, 2016, 20, 834-865.	1.0	24
130	Accessed Compositions in Turbulent Reactive Flows. Flow, Turbulence and Combustion, 2004, 72, 219-243.	1.4	23
131	Entropy production and element conservation in the quasi-steady-state approximation. Combustion and Flame, 2004, 137, 251-254.	2.8	23
132	An investigation of mixing in a three-stream turbulent jet. Physics of Fluids, 2013, 25, 105105.	1.6	23
133	The relationship between the probability approach and particle models for reaction in homogeneous turbulence. Combustion and Flame, 1979, 35, 41-45.	2.8	22
134	A second-order Monte Carlo method for the solution of the Ito stochastic differential equation. Stochastic Analysis and Applications, 1986, 4, 151-186.	0.9	21
135	Sensitivity calculations in PDF modelling of turbulent flames. Proceedings of the Combustion Institute, 2009, 32, 1629-1637.	2.4	21
136	A novel transient turbulent jet flame for studying turbulent combustion. Proceedings of the Combustion Institute, 2013, 34, 1251-1259.	2.4	21
137	Direct numerical simulation of a statistically stationary, turbulent reacting flow. Combustion Theory and Modelling, 1999, 3, 371-408.	1.0	20
138	The geometry of reaction trajectories and attracting manifolds in composition space. Combustion Theory and Modelling, 2006, 10, 361-388.	1.0	19
139	Probability Calculations for Turbulent Jet Flows with Mixing and Reaction of NO and O3. Combustion Science and Technology, 1984, 37, 59-78.	1.2	17
140	Reduced Description of Complex Dynamics in Reactive Systems. Journal of Physical Chemistry A, 2007, 111, 8464-8474.	1.1	16
141	Implicit and explicit schemes for mass consistency preservation in hybrid particle/finite-volume algorithms for turbulent reactive flows. Journal of Computational Physics, 2014, 257, 352-373.	1.9	16
142	Coagulation-induced particle-concentration fluctuations in homogeneous, isotropic turbulence. Physics of Fluids, 2002, 14, 2447.	1.6	15
143	A Perspective on Turbulence Modeling. ICASE/LaRC Interdisciplinary Series in Science and Engineering, 1999, , 53-67.	0.1	15
144	A LES/PDF simulator on block-structured meshes. Combustion Theory and Modelling, 2019, 23, 1-41.	1.0	14

#	Article	IF	CITATIONS
145	Turbulent piloted partially-premixed flames with varying levels of O ₂ /N ₂ : stability limits and PDF calculations. Combustion Theory and Modelling, 2011, 15, 773-793.	1.0	12
146	Turbulence Resolution Scale Dependence in Large-Eddy Simulations of a Jet Flame. Flow, Turbulence and Combustion, 2012, 88, 529-561.	1.4	12
147	Comment on the article "An effective particle tracing scheme on structured/unstructured grids in hybrid finite volume/PDF Monte Carlo methods―by Li and Modest. Journal of Computational Physics, 2003, 186, 356-358.	1.9	11
148	An a priori DNS study of the shadow-position mixing model. Combustion and Flame, 2016, 165, 223-245.	2.8	11
149	Filtered Density Function Simulations of a Near-Limit Turbulent Lean Premixed Flame. Journal of Propulsion and Power, 2020, 36, 381-399.	1.3	11
150	Sensitivity calculations in PDF particle methods. Combustion and Flame, 2008, 153, 202-215.	2.8	9
151	The implications of the probability equations for turbulent combustion models. Combustion and Flame, 1977, 29, 235-246.	2.8	8
152	High-Speed Function Approximation., 2007,,.		8
153	Characterization of extinction/reignition events in turbulent premixed counterflow flames using strain-rate analysis. Proceedings of the Combustion Institute, 2017, 36, 1919-1927.	2.4	8
154	EPVS-FMDF for LES of High-Speed Turbulent Flows. , 2012, , .		7
155	A combined PPAC-RCCE-ISAT methodology for efficient implementation of combustion chemistry. Combustion Theory and Modelling, 2019, 23, 1021-1053.	1.0	7
156	An accurate time advancement algorithm for particle tracking. Journal of Computational Physics, 2008, 227, 8792-8806.	1.9	6
157	The determination of turbulence-model statistics from the velocity–acceleration correlation. Journal of Fluid Mechanics, 2014, 757, .	1.4	5
158	A Simple Approach for Specifying Velocity Inflow Boundary Conditions in Simulations of Turbulent Opposed-Jet Flows. Flow, Turbulence and Combustion, 2017, 98, 131-153.	1.4	5
159	Author's reply to C. Dopazo's comments on "The probability approach to the modelling of turbulent reacting flows― Combustion and Flame, 1979, 34, 103-105.	2.8	4
160	Title is missing!. Combustion and Flame, 2005, 143, 339-341.	2.8	1
161	Computational Models for Turbulent Reacting Flows. By R. O. FOX. Cambridge University Press, 2003. 438 pp. ISBN 0521 650496, 80 or \$120 (hardback); ISBN 0521 6590780, 39.95 or \$55 (paperback). Journal of Fluid Mechanics, 2004, 504, 407-409.	1.4	0
162	The Direct Richardson pth Order (DRp) Schemes: A New Class of Time Integration Schemes for Stochastic Differential Equations. SIAM Journal of Scientific Computing, 2012, 34, A137-A160.	1.3	0

#	Article	IF	CITATIONS
163	Ten Chapters in Turbulence. AIAA Journal, 2014, 52, 666-667.	1.5	0
164	Professor Robert William Bilger (1935–2015). Combustion and Flame, 2017, 179, A1-A2.	2.8	0