Seiichi Yamamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3008022/publications.pdf

Version: 2024-02-01

304368 377514 1,442 87 22 34 h-index citations g-index papers 88 88 88 618 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Luminescence imaging of water during protonâ€beam irradiation for range estimation. Medical Physics, 2015, 42, 6498-6506.	1.6	74
2	Luminescence imaging of water during carbon-ion irradiation for range estimation. Medical Physics, 2016, 43, 2455-2463.	1.6	66
3	Simultaneous imaging using Si-PM-based PET and MRI for development of an integrated PET/MRI system. Physics in Medicine and Biology, 2012, 57, N1-N13.	1.6	62
4	Interference between PET and MRI sub-systems in a silicon-photomultiplier-based PET/MRI system. Physics in Medicine and Biology, 2011, 56, 4147-4159.	1.6	61
5	Development of an ultrahigh resolution Si-PM based PET system for small animals. Physics in Medicine and Biology, 2013, 58, 7875-7888.	1.6	58
6	Large Size Czochralski Growth and Scintillation Properties of. IEEE Transactions on Nuclear Science, 2016, 63, 443-447.	1.2	49
7	Luminescence imaging of water during alpha particle irradiation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 819, 6-13.	0.7	48
8	Luminescence imaging of water during irradiation of X-ray photons lower energy than Cerenkovlight threshold. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 832, 264-270.	0.7	42
9	A position-sensitive alpha detector using a thin plastic scintillator combined with a position-sensitive photomultiplier tube. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 418, 387-393.	0.7	41
10	Development of a Si-PM based alpha camera for plutonium detection in nuclear fuel facilities. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 747, 81-86.	0.7	41
11	Growth and scintillation properties of 3 in. diameter Ce doped Gd3Ga3Al2O12 scintillation single crystal. Journal of Crystal Growth, 2016, 452, 81-84.	0.7	37
12	Secondary-electron-bremsstrahlung imaging for proton therapy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 833, 199-207.	0.7	37
13	Development of a low-energy x-ray camera for the imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation for range estimation. Physics in Medicine and Biology, 2017, 62, 5006-5020.	1.6	37
14	Imaging of monochromatic beams by measuring secondary electron bremsstrahlung for carbon-ion therapy using a pinhole x-ray camera. Physics in Medicine and Biology, 2018, 63, 045016.	1.6	37
15	Development of a high-resolution Si-PM-based gamma camera system. Physics in Medicine and Biology, 2011, 56, 7555-7567.	1.6	36
16	Source of luminescence of water lower energy than the Cerenkov-light threshold during irradiation of carbon-ion. Journal of Physics Communications, 2018, 2, 065010.	0.5	30
17	Estimation and correction of produced light from prompt gamma photons on luminescence imaging of water for proton therapy dosimetry. Physics in Medicine and Biology, 2018, 63, 04NT02.	1.6	29
18	Development of a YAP(Ce) camera for the imaging of secondary electron bremsstrahlung x-ray emitted during carbon-ion irradiation toward the use of clinical conditions. Physics in Medicine and Biology, 2019, 64, 135019.	1.6	28

#	Article	IF	CITATIONS
19	Addition of luminescence process in Monte Carlo simulation to precisely estimate the light emitted from water during proton and carbon-ion irradiation. Physics in Medicine and Biology, 2018, 63, 125019.	1.6	25
20	Development of a high-resolution alpha camera. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 392, 291-294.	0.7	24
21	Use of YAP(Ce) in the development of high spatial resolution radiation imaging detectors. Radiation Measurements, 2018, 119, 184-191.	0.7	24
22	Measurement of nuclear reaction cross sections by using Cherenkov radiation toward high-precision proton therapy. Scientific Reports, 2018, 8, 2570.	1.6	23
23	Development of a compact and high spatial resolution gamma camera system using LaBr3(Ce). Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 622, 261-269.	0.7	22
24	Development of a high resolution gamma camera system using finely grooved GAGG scintillator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 821, 28-33.	0.7	21
25	Optimization of thickness of GAGG scintillator for detecting an alpha particle emitter in a field of high beta and gamma background. Radiation Measurements, 2018, 112, 1-5.	0.7	21
26	Monitoring of positron using high-energy gamma camera for proton therapy. Annals of Nuclear Medicine, 2015, 29, 268-275.	1,2	20
27	Comparison of light outputs, decay times, and imaging performance of a ZnS(Ag) scintillator for alpha particles, beta particles, and gamma photons. Applied Radiation and Isotopes, 2021, 168, 109527.	0.7	19
28	An alpha-particle imaging system for detecting plutonium contamination. Nuclear Instruments & Methods in Physics Research, 1983, 212, 413-418.	0.9	18
29	High resolution Cerenkov light imaging of induced positron distribution in proton therapy. Medical Physics, 2014, 41, 111913.	1.6	18
30	Imaging of radiocesium uptake dynamics in a plant body by using a newly developed high-resolution gamma camera. Journal of Environmental Radioactivity, 2016, 151, 461-467.	0.9	17
31	Optical imaging of water during X-ray beam irradiations from linear accelerator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 872, 174-180.	0.7	17
32	Stability and linearity of luminescence imaging of water during irradiation of proton-beams and X-ray photons lower energy than the Cerenkov light threshold. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 883, 48-56.	0.7	17
33	Imaging of produced light in water during high energy electron beam irradiations from a medical linear accelerator. Radiation Measurements, 2018, 116, 1-9.	0.7	17
34	Sensitivity improvement of YAP(Ce) cameras for imaging of secondary electron bremsstrahlung x-rays emitted during carbon-ion irradiation: problem and solution. Physics in Medicine and Biology, 2020, 65, 105008.	1.6	16
35	Discovery of the luminescence of water during irradiation of radiation at a lower energy than the Cherenkov light threshold. Radiological Physics and Technology, 2021, 14, 16-24.	1.0	16
36	Luminescence Imaging of Water During Irradiation of Beta Particles With Energy Lower Than Cerenkov-Light Threshold. IEEE Transactions on Radiation and Plasma Medical Sciences, 2017, 1, 329-333.	2.7	15

#	Article	IF	Citations
37	Dose image prediction for range and width verifications from carbon ionâ€induced secondary electron bremsstrahlung xâ€rays using deep learning workflow. Medical Physics, 2020, 47, 3520-3532.	1.6	15
38	Estimation and correction of Cerenkov-light on luminescence image of water for carbon-ion therapy dosimetry. Physica Medica, 2020, 74, 118-124.	0.4	14
39	Development of a high resolution LaGPS imaging detector with pulse shape discrimination capability of different types of radiations. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 922, 8-18.	0.7	13
40	Estimation of the fractions of luminescence of water at higher energy than Cerenkov-light threshold for various types of radiation. Journal of Biomedical Optics, 2019, 24, 1.	1.4	12
41	Estimation of shifts of therapeutic carbon-ion beams owing to cavities in a polyethylene target by measuring prompt X-ray images. Japanese Journal of Applied Physics, 2020, 59, 087001.	0.8	12
42	Scintillation imaging of air during proton and carbon-ion beam irradiations. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 833, 149-155.	0.7	11
43	Comparison of Noise Equivalent Count Rates (NECRs) for the PET Systems With Different Ring Diameter and Electronics. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019, 3, 371-376.	2.7	11
44	Pulse shape discriminations of different types of radiation on GGAG imaging detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 910, 174-183.	0.7	10
45	Development of a Gdâ,,Siâ,,Oâ,‡ (GPS) Scintillator-Based Alpha Imaging Detector for Rapid Plutonium Detection in High-Radon Environments. IEEE Transactions on Nuclear Science, 2020, 67, 2203-2208.	1.2	10
46	Optical imaging of muons. Scientific Reports, 2020, 10, 20790.	1.6	10
47	Ultrahigh-resolution Cerenkov-light imaging system for positron radionuclides: potential applications and limitations. Annals of Nuclear Medicine, 2014, 28, 961-969.	1.2	9
48	Development of a Si-PM-based GGAG radiation-imaging detector with pulse-shape discrimination capability to separate different types of radiation. Radiation Measurements, 2018, 119, 85-92.	0.7	9
49	Estimation of the optical errors on the luminescence imaging of water for proton beam. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 888, 163-168.	0.7	9
50	Three-dimensional (3D) dose distribution measurements of proton beam using a glass plate. Biomedical Physics and Engineering Express, 2019, 5, 045033.	0.6	9
51	Development of a high-resolution YSO gamma camera system that employs 0.8-mm pixels. Annals of Nuclear Medicine, 2014, 28, 232-240.	1.2	8
52	Development of a Cherenkov light imaging system for studying the dynamics of radiocesium in plants. Journal of Nuclear Science and Technology, 2017, 54, 662-667.	0.7	8
53	Optical imaging for the characterization of radioactive carbon and oxygen ion beams. Physics in Medicine and Biology, 2019, 64, 115009.	1.6	8
54	Development of highâ€resolution YAP(Ce) xâ€ray camera for the imaging of astatineâ€211(Atâ€211) in small animals. Medical Physics, 2020, 47, 5739-5748.	1.6	8

#	Article	IF	Citations
55	Prediction of dose distribution from luminescence image of water using a deep convolutional neural network for particle therapy. Medical Physics, 2020, 47, 3882-3891.	1.6	8
56	Estimation of the three-dimensional (3D) dose distribution of electron beams from medical linear accelerator (LINAC) using plastic scintillator plate. Radiation Measurements, 2019, 124, 103-108.	0.7	6
57	Angular dependencies of Cerenkov-light in water for carbon-ion, high energy x-ray and electron. Biomedical Physics and Engineering Express, 2019, 5, 027003.	0.6	6
58	Luminescence imaging of water during uniform-field irradiation by spot scanning proton beams. Physics in Medicine and Biology, 2018, 63, 11NTO1.	1.6	5
59	Estimation of dose and light distributions in water during irradiation of muon beams. Physica Scripta, 2019, 94, 125804.	1.2	5
60	Three-dimensional dose-distribution measurement of therapeutic carbon-ion beams using a ZnS scintillator sheet. Journal of Radiation Research, 2021, 62, 825-832.	0.8	5
61	High position resolution gamma-ray imagers consisting of a monolithic MPPC array with submillimeter pixelized scintillator crystals. , 2012 , , .		4
62	Development of Eu:Srl2 Scintillator Array for Gamma-Ray Imaging Applications. IEEE Transactions on Nuclear Science, 2017, 64, 1647-1651.	1.2	4
63	Performance evaluation of YAlO3 scintillator plates with different Ce concentrations. Applied Radiation and Isotopes, 2021, 168, 109483.	0.7	4
64	Increase in the intensity of an optical signal with fluorescein during proton and carbonâ€ion irradiation. Journal of Applied Clinical Medical Physics, 2021, 22, 188-197.	0.8	4
65	Three-dimensional (3D) optical imaging of muon beam using a plastic scintillator plate in water. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1015, 165768.	0.7	4
66	Diagnostic Accuracy of Positron Emission Mammography with F-fluorodeoxyglucose in Breast Cancer Tumor of Less than 20 mm in Size. Asia Oceania Journal of Nuclear Medicine and Biology, 2019, 7, 13-21.	0.1	4
67	Possibility analysis of bremsstrahlung x-ray imaging of C-14 radionuclide using a LaGPS radiation imaging system. Biomedical Physics and Engineering Express, 2019, 5, 035024.	0.6	3
68	Optical imaging of produced light in water during irradiation of gamma photons lower energy than the Cerenkov-light threshold. Applied Radiation and Isotopes, 2020, 157, 109037.	0.7	3
69	Source position measurement by Cherenkov emission imaging from applicators for highâ€doseâ€rate brachytherapy. Medical Physics, 2021, 48, 488-499.	1.6	3
70	Imaging of polarized components of Cerenkov light and luminescence of water during carbonâ€ion irradiation. Medical Physics, 2021, 48, 427-433.	1.6	3
71	Technical note: Optical imaging of lithiumâ€containing zinc sulfate plate in water during irradiation of neutrons from boron neutron capture therapy (BNCT) system. Medical Physics, 2022, 49, 1822-1830.	1.6	3
72	Evaluation and development for positron emission mammography based on Pr:LuAG scintillator crystals. , 2012, , .		2

#	Article	IF	CITATIONS
73	Basic performance evaluation of a Si-PM array-based LGSO phoswich DOI block detector for a high-resolution small animal PET system. Radiological Physics and Technology, 2013, 6, 281-286.	1.0	2
74	Imaging of fragment particles in water by nuclear spallation during carbon-ion irradiation. Physics in Medicine and Biology, 2019, 64, 13NT01.	1.6	2
75	Possibility evaluation of the optical imaging of proton mini-beams. Physics in Medicine and Biology, 2021, 66, .	1.6	2
76	First measured optical image of Cerenkov-light in water during irradiation of neutron beam from boron neutron capture therapy (BNCT) system. Radiation Measurements, 2021, 146, 106633.	0.7	2
77	Measurements of temporal response of luminescence of water at lower energy than Cerenkov-light threshold during carbon-ion irradiation. Biomedical Physics and Engineering Express, 2020, 6, 045002.	0.6	2
78	Radioluminescence by synchrotron radiation with lower energy than the Cherenkov light threshold in water. Journal of Physics Communications, 2020, 4, 075002.	0.5	2
79	Effective Radiofrequency Attenuation Methods to Reduce the Interference Between PET and MRI Systems. IEEE Transactions on Radiation and Plasma Medical Sciences, 2017, 1, 400-404.	2.7	1
80	Monte Carlo simulation of the bremsstrahlung X-rays emitted from H-3 and C-14 for the in-vivo imaging of small animals. Applied Radiation and Isotopes, 2020, 160, 109136.	0.7	1
81	Comparison of the distributions of bremsstrahlung X-rays, Cerenkov light, and annihilation radiations for positron emitters. Applied Radiation and Isotopes, 2021, 176, 109861.	0.7	1
82	Energy spread estimation of radioactive oxygen ion beams using optical imaging. Physics in Medicine and Biology, 2020, 65, 235002.	1.6	1
83	Investigation of the Relation of Decay Time Differences and \$alpha-eta\$ Ratios for Newly Developed Scintillators. IEEE Transactions on Nuclear Science, 2019, 66, 2324-2328.	1.2	0
84	Position distribution calculation of annihilation radiations and bremsstrahlung x rays in water during irradiation of positive muons: a Monte Carlo simulation study. Physica Scripta, 2021, 96, 025302.	1.2	0
85	3-D Optical Imaging System of Muon Beams Using a Silver Activated Zinc Sulfide (ZnS(Ag)) Sheet Combined With a Mirror. IEEE Transactions on Nuclear Science, 2021, 68, 2748-2752.	1.2	0
86	In-vivo imaging of a mouse by detecting bremsstrahlung X-rays from $14C$ using a La-GPS imaging system. Journal of Nuclear Science and Technology, 0 , $1-12$.	0.7	0
87	Correcting angular dependencies using nonâ€polarized components of Cherenkov light in water during highâ€energy Xâ€ray irradiation. Medical Physics, 0, , .	1.6	0