Karl E Duderstadt ## List of Publications by Citations Source: https://exaly.com/author-pdf/3007923/karl-e-duderstadt-publications-by-citations.pdf Version: 2024-04-10 This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above. The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article. | 2O | 559 | 11 | 22 | |-------------------|--------------------|---------------------|-----------------| | papers | citations | h-index | g-index | | 22
ext. papers | 776 ext. citations | 14.9 avg, IF | 4.34
L-index | | # | Paper | IF | Citations | |----|--|------|-----------| | 20 | DNA stretching by bacterial initiators promotes replication origin opening. <i>Nature</i> , 2011 , 478, 209-13 | 50.4 | 144 | | 19 | Single-molecule visualization of fast polymerase turnover in the bacterial replisome. <i>ELife</i> , 2017 , 6, | 8.9 | 80 | | 18 | Human NLRP1 is a sensor for double-stranded RNA. <i>Science</i> , 2021 , 371, | 33.3 | 67 | | 17 | Origin remodeling and opening in bacteria rely on distinct assembly states of the DnaA initiator. <i>Journal of Biological Chemistry</i> , 2010 , 285, 28229-39 | 5.4 | 61 | | 16 | Simultaneous Real-Time Imaging of Leading and Lagging Strand Synthesis Reveals the Coordination Dynamics of Single Replisomes. <i>Molecular Cell</i> , 2016 , 64, 1035-1047 | 17.6 | 49 | | 15 | A structural framework for replication origin opening by AAA+ initiation factors. <i>Current Opinion in Structural Biology</i> , 2013 , 23, 144-53 | 8.1 | 38 | | 14 | Stability versus exchange: a paradox in DNA replication. <i>Nucleic Acids Research</i> , 2016 , 44, 4846-54 | 20.1 | 26 | | 13 | Replication-fork dynamics. Cold Spring Harbor Perspectives in Biology, 2014, 6, | 10.2 | 20 | | 12 | Single-molecule observation of prokaryotic DNA replication. <i>Methods in Molecular Biology</i> , 2015 , 1300, 219-38 | 1.4 | 14 | | 11 | Multiplex flow magnetic tweezers reveal rare enzymatic events with single molecule precision. <i>Nature Communications</i> , 2020 , 11, 4714 | 17.4 | 12 | | 10 | Noise in the Machine: Alternative Pathway Sampling is the Rule During DNA Replication. <i>BioEssays</i> , 2018 , 40, 1700159 | 4.1 | 11 | | 9 | Detection of kinetic change points in piece-wise linear single molecule motion. <i>Journal of Chemical Physics</i> , 2018 , 148, 123317 | 3.9 | 11 | | 8 | MCM complexes are barriers that restrict cohesin-mediated loop extrusion <i>Nature</i> , 2022 , | 50.4 | 9 | | 7 | MCM complexes are barriers that restrict cohesin-mediated loop extrusion | | 5 | | 6 | The fork protection complex recruits FACT to reorganize nucleosomes during replication <i>Nucleic Acids Research</i> , 2022 , | 20.1 | 3 | | 5 | Mobile origin-licensing factors confer resistance to conflicts with RNA polymerase <i>Cell Reports</i> , 2022 , 38, 110531 | 10.6 | 3 | | 4 | Mars, a molecule archive suite for reproducible analysis and reporting of single molecule properties from bioimages | | 1 | ## LIST OF PUBLICATIONS 3 Highly-parallel microfluidics-based force spectroscopy on single cytoskeletal motors Highly-Parallel Microfluidics-Based Force Spectroscopy on Single Cytoskeletal Motors. *Small*, **2021**, 17, e2007388 How to Follow a Traveler with a Brownian Swagger. *Biophysical Journal*, **2018**, 115, 165-166 2.9 1