

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3007829/publications.pdf

Version: 2024-02-01

VI CAO

#	Article	IF	CITATIONS
1	The cytotoxicity of zinc oxide nanoparticles to 3D brain organoids results from excessive intracellular zinc ions and defective autophagy. Cell Biology and Toxicology, 2023, 39, 259-275.	2.4	11
2	Co-Catalyst Ti3C2TX MXene-Modified ZnO Nanorods Photoanode for Enhanced Photoelectrochemical Water Splitting. Topics in Catalysis, 2023, 66, 12-21.	1.3	12
3	Potential roles of Kruppelâ€like factors in mediating adverse vascular effects of nanomaterials: A review. Journal of Applied Toxicology, 2022, 42, 4-16.	1.4	23
4	MoS2 nanosheets and bulk materials altered lipid profiles in 3D Caco-2 spheroids. Chinese Chemical Letters, 2022, 33, 293-297.	4.8	28
5	Comparison of P25 and nanobelts on Kruppelâ€like factorâ€mediated nitric oxide pathways in human umbilical vein endothelial cells. Journal of Applied Toxicology, 2022, 42, 651-659.	1.4	8
6	Effects of epigallocatechin gallate on the stability, dissolution and toxicology of ZnO nanoparticles. Food Chemistry, 2022, 371, 131383.	4.2	5
7	TiO2 nanosheets promote the transformation of vascular smooth muscle cells into foam cells in vitro and in vivo through the up-regulation of nuclear factor kappa B subunit 2. Journal of Hazardous Materials, 2022, 424, 127704.	6.5	14
8	Risk Factors of Skilled Nursing Facility Admissions and the Interrelation With Hospitalization and Amount of Informal Caregiving Received. Medical Care, 2022, 60, 294-301.	1.1	3
9	Influences of Unmodified and Carboxylated Carbon Nanotubes on Lipid Profiles in THP-1 Macrophages: A Lipidomics Study. International Journal of Toxicology, 2022, 41, 16-25.	0.6	5
10	The uses of 3D human brain organoids for neurotoxicity evaluations: A review. NeuroToxicology, 2022, 91, 84-93.	1.4	18
11	Intratracheal instillation of graphene oxide decreases antiâ€virus responses and lipid contents via suppressing Tollâ€like receptor 3 in mouse livers. Journal of Applied Toxicology, 2022, 42, 1822-1831.	1.4	7
12	Nutrient molecule corona: An update for nanomaterial-food component interactions. Toxicology, 2022, 476, 153253.	2.0	15
13	Modeling better <i>inÂvitro</i> models for the prediction of nanoparticle toxicity: a review. Toxicology Mechanisms and Methods, 2021, 31, 1-17.	1.3	51
14	Transcriptomic analysis suggested the involvement of impaired lipid droplet biogenesis in graphene oxide-induced cytotoxicity in human umbilical vein endothelial cells. Chemico-Biological Interactions, 2021, 333, 109325.	1.7	24
15	Introduction to special issue endothelial cells in toxicology: Current status and future perspectives. Journal of Applied Toxicology, 2021, 41, 656-658.	1.4	0
16	Characterization and Mechanism of Linearized-Microcystinase Involved in Bacterial Degradation of Microcystins. Frontiers in Microbiology, 2021, 12, 646084.	1.5	7
17	Titanate nanofibers reduce Kruppel-like factor 2 (KLF2)-eNOS pathway in endothelial monolayer: A transcriptomic study. Chinese Chemical Letters, 2021, 32, 1567-1570.	4.8	20
18	A comparative study of toxicity of graphdiyne and graphene oxide to human umbilical vein endothelial cells. Journal of Applied Toxicology, 2021, 41, 2021-2030.	1.4	16

Υι Cao

#	Article	IF	CITATIONS
19	Comparison of multi-walled carbon nanotubes and halloysite nanotubes on lipid profiles in human umbilical vein endothelial cells. NanoImpact, 2021, 23, 100333.	2.4	12
20	Transcriptomic-based toxicological investigations of graphene oxide with modest cytotoxicity to human umbilical vein endothelial cells: changes of Toll-like receptor signaling pathways. Toxicology Research, 2021, 10, 1104-1115.	0.9	11
21	Titanate nanotubes at non-cytotoxic concentrations affect NO signaling pathway in human umbilical vein endothelial cells. Toxicology in Vitro, 2020, 62, 104689.	1.1	20
22	Mechanical Properties and Gamma-Ray Shielding Performance of 3D-Printed Poly-Ether-Ether-Ketone/Tungsten Composites. Materials, 2020, 13, 4475.	1.3	34
23	Induction of lipid droplets in THP-1 macrophages by multi-walled carbon nanotubes in a diameter-dependent manner: A transcriptomic study. Toxicology Letters, 2020, 332, 65-73.	0.4	23
24	Transcriptomic analysis revealed that multi-walled carbon nanotubes diameter-dependently induced pyroptosis in THP-1 macrophages. NanoImpact, 2020, 20, 100270.	2.4	13
25	Multi-walled carbon nanotubes decrease neuronal NO synthase in 3D brain organoids. Science of the Total Environment, 2020, 748, 141384.	3.9	30
26	Anthocyanins decrease the internalization of TiO2 nanoparticles into 3D Caco-2 spheroids. Food Chemistry, 2020, 331, 127360.	4.2	10
27	Evaluation of toxicity of halloysite nanotubes and multi-walled carbon nanotubes to endothelial cells <i>inÂvitro</i> and blood vessels <i>inÂvivo</i> . Nanotoxicology, 2020, 14, 1017-1038.	1.6	44
28	Multi-walled carbon nanotubes (MWCNTs) transformed THP-1 macrophages into foam cells: Impact of pulmonary surfactant component dipalmitoylphosphatidylcholine. Journal of Hazardous Materials, 2020, 392, 122286.	6.5	22
29	Highly green fluorescent Nb ₂ C MXene quantum dots. Chemical Communications, 2020, 56, 6648-6651.	2.2	49
30	Graphene oxide size-dependently altered lipid profiles in THP-1 macrophages. Ecotoxicology and Environmental Safety, 2020, 199, 110714.	2.9	30
31	Pre-incubated with BSA-complexed free fatty acids alters ER stress/autophagic gene expression by carboxylated multi-walled carbon nanotube exposure in THP-1 macrophages. Chinese Chemical Letters, 2019, 30, 1224-1228.	4.8	24
32	Influence of 3-Hydroxyflavone on Colloidal Stability and Internationalization of Ag Nanomaterials Into THP-1 Macrophages. Dose-Response, 2019, 17, 155932581986571.	0.7	4
33	Evaluation of in vitro toxicity of silica nanoparticles (NPs) to lung cells: Influence of cell types and pulmonary surfactant component DPPC. Ecotoxicology and Environmental Safety, 2019, 186, 109770.	2.9	32
34	PEGylated gold nanorods are not cytotoxic to human endothelial cells but affect kruppel-like factor signaling pathway. Toxicology and Applied Pharmacology, 2019, 382, 114758.	1.3	20
35	Pharmacological and toxicological aspects of carbon nanotubes (CNTs) to vascular system: A review. Toxicology and Applied Pharmacology, 2019, 385, 114801.	1.3	50
36	Multicolor tunable highly luminescent carbon dots for remote force measurement and white light emitting diodes. Chemical Communications, 2019, 55, 12164-12167.	2.2	33

Υι ΟΑΟ

#	Article	IF	CITATIONS
37	Toxicity of combined exposure of ZnO nanoparticles (NPs) and myricetin to Caco-2 cells: changes of NP colloidal aspects, NP internalization and the apoptosis-endoplasmic reticulum stress pathway. Toxicology Research, 2019, 8, 613-620.	0.9	11
38	Multi-walled carbon nanotubes promoted lipid accumulation in human aortic smooth muscle cells. Toxicology and Applied Pharmacology, 2019, 374, 11-19.	1.3	31
39	Multi-walled carbon nanotubes (MWCNTs) promoted lipid accumulation in THP-1 macrophages through modulation of endoplasmic reticulum (ER) stress. Nanotoxicology, 2019, 13, 938-951.	1.6	41
40	Cyanidin chloride modestly protects Caco-2†cells from ZnO nanoparticle exposure probably through the induction of autophagy. Food and Chemical Toxicology, 2019, 127, 251-259.	1.8	20
41	The toxicity of multi-walled carbon nanotubes (MWCNTs) to human endothelial cells: The influence of diameters of MWCNTs. Food and Chemical Toxicology, 2019, 126, 169-177.	1.8	55
42	<p>Multi-Walled Carbon Nanotubes (MWCNTs) Activate Apoptotic Pathway Through ER Stress: Does Surface Chemistry Matter?</p> . International Journal of Nanomedicine, 2019, Volume 14, 9285-9294.	3.3	18
43	Palmitate enhanced the cytotoxicity of ZnO nanomaterials possibly by promoting endoplasmic reticulum stress. Journal of Applied Toxicology, 2019, 39, 798-806.	1.4	12
44	Influence of pristine and hydrophobic ZnO nanoparticles on cytotoxicity and endoplasmic reticulum (ER) stress-autophagy-apoptosis gene expression in A549-macrophage co-culture. Ecotoxicology and Environmental Safety, 2019, 167, 188-195.	2.9	18
45	The use of proteomic technologies to study molecular mechanisms of multidrug resistance in cancer. European Journal of Medicinal Chemistry, 2019, 162, 423-434.	2.6	30
46	The toxicity of hydroxylated and carboxylated multi-walled carbon nanotubes to human endothelial cells was not exacerbated by ER stress inducer. Chinese Chemical Letters, 2019, 30, 582-586.	4.8	28
47	3â€Hydroxyflavone enhances the toxicity of ZnO nanoparticles in vitro. Journal of Applied Toxicology, 2018, 38, 1206-1214.	1.4	14
48	The Toxicity of Nanoparticles to Human Endothelial Cells. Advances in Experimental Medicine and Biology, 2018, 1048, 59-69.	0.8	31
49	Chemical Structures of Polyphenols That Critically Influence the Toxicity of ZnO Nanoparticles. Journal of Agricultural and Food Chemistry, 2018, 66, 1714-1722.	2.4	25
50	Toxicity of ZnO nanoparticles (NPs) with or without hydrophobic surface coating to THP-1 macrophages: interactions with BSA or oleate-BSA. Toxicology Mechanisms and Methods, 2018, 28, 520-528.	1.3	7
51	The effects of baicalein or baicalin on the colloidal stability of ZnO nanoparticles (NPs) and toxicity of NPs to Caco-2 cells. Toxicology Mechanisms and Methods, 2018, 28, 167-176.	1.3	31
52	A comparative study of toxicity of TiO ₂ , ZnO, and Ag nanoparticles to human aortic smooth-muscle cells. International Journal of Nanomedicine, 2018, Volume 13, 8037-8049.	3.3	42
53	A review of cardiovascular toxicity of TiO2, ZnO and Ag nanoparticles (NPs). BioMetals, 2018, 31, 457-476.	1.8	55
54	Influence of bovine serum albumin pre-incubation on toxicity and ER stress-apoptosis gene expression in THP-1 macrophages exposed to ZnO nanoparticles. Toxicology Mechanisms and Methods, 2018, 28, 587-598.	1.3	11

Υι Cao

#	Article	IF	CITATIONS
55	Cytotoxicity, cytokine release and ER stress-autophagy gene expression in endothelial cells and alveolar-endothelial co-culture exposed to pristine and carboxylated multi-walled carbon nanotubes. Ecotoxicology and Environmental Safety, 2018, 161, 569-577.	2.9	27
56	Lipid accumulation in multi-walled carbon nanotube-exposed HepG2 cells: Possible role of lipophagy pathway. Food and Chemical Toxicology, 2018, 121, 65-71.	1.8	21
57	The endoplasmic reticulum stress inducer thapsigargin enhances the toxicity of ZnO nanoparticles to macrophages and macrophage-endothelial co-culture. Environmental Toxicology and Pharmacology, 2017, 50, 103-110.	2.0	31
58	Influence of phytochemicals on the biocompatibility of inorganic nanoparticles: a state-of-the-art review. Phytochemistry Reviews, 2017, 16, 555-563.	3.1	21
59	The use of human umbilical vein endothelial cells (HUVECs) as an <i>in vitro</i> model to assess the toxicity of nanoparticles to endothelium: a review. Journal of Applied Toxicology, 2017, 37, 1359-1369.	1.4	209
60	Evaluation of inÂvitro toxicity of polymeric micelles to human endothelial cells under different conditions. Chemico-Biological Interactions, 2017, 263, 46-54.	1.7	26
61	The effects of endoplasmic reticulum stress inducer thapsigargin on the toxicity of ZnO or TiO ₂ nanoparticles to human endothelial cells. Toxicology Mechanisms and Methods, 2017, 27, 191-200.	1.3	43
62	The presence of palmitate affected the colloidal stability of ZnO NPs but not the toxicity to Caco-2 cells. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	14
63	The presence of oleate stabilized ZnO nanoparticles (NPs) and reduced the toxicity of aged NPs to Caco-2 and HepC2 cells. Chemico-Biological Interactions, 2017, 278, 40-47.	1.7	41
64	Toxicity of ZnO nanoparticles (NPs) to A549 cells and A549 epithelium in vitro: Interactions with dipalmitoyl phosphatidylcholine (DPPC). Environmental Toxicology and Pharmacology, 2017, 56, 233-240.	2.0	32
65	A review of endoplasmic reticulum (ER) stress and nanoparticle (NP) exposure. Life Sciences, 2017, 186, 33-42.	2.0	106
66	Cytotoxicity, oxidative stress and inflammation induced by ZnO nanoparticles in endothelial cells: interaction with palmitate or lipopolysaccharide. Journal of Applied Toxicology, 2017, 37, 895-901.	1.4	53
67	Thermoresponsive Polymers with Lower Critical Solution Temperature―or Upper Critical Solution Temperatureâ€Type Phase Behaviour Do Not Induce Toxicity to Human Endothelial Cells. Basic and Clinical Pharmacology and Toxicology, 2017, 120, 79-85.	1.2	30
68	The adverse vascular effects of multi-walled carbon nanotubes (MWCNTs) to human vein endothelial cells (HUVECs) in vitro: role of length of MWCNTs. Journal of Nanobiotechnology, 2017, 15, 80.	4.2	54
69	Monocyte adhesion induced by multi-walled carbon nanotubes and palmitic acid in endothelial cells and alveolar–endothelial co-cultures. Nanotoxicology, 2016, 10, 1-10.	1.6	32
70	Foam cell formation by particulate matter (PM) exposure: a review. Inhalation Toxicology, 2016, 28, 583-590.	0.8	46
71	Consideration of interaction between nanoparticles and food components for the safety assessment of nanoparticles following oral exposure: A review. Environmental Toxicology and Pharmacology, 2016, 46, 206-210.	2.0	83
72	Combined effects of low levels of palmitate on toxicity of ZnO nanoparticles to THP-1 macrophages. Environmental Toxicology and Pharmacology, 2016, 48, 103-109.	2.0	47

Υι Οαο

#	Article	IF	CITATIONS
73	Anthocyanins and phenolic acids from a wild blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages. European Journal of Nutrition, 2016, 55, 171-182.	1.8	24
74	Synergistic Effects of Zinc Oxide Nanoparticles and Fatty Acids on Toxicity to Caco-2 Cells. International Journal of Toxicology, 2015, 34, 67-76.	0.6	58
75	Applications of the comet assay in particle toxicology: air pollution and engineered nanomaterials exposure. Mutagenesis, 2015, 30, 67-83.	1.0	54
76	Endothelial cell activation, oxidative stress and inflammation induced by a panel of metal-based nanomaterials. Nanotoxicology, 2015, 9, 813-824.	1.6	38
77	Carbon Black Nanoparticles Promote Endothelial Activation and Lipid Accumulation in Macrophages Independently of Intracellular ROS Production. PLoS ONE, 2014, 9, e106711.	1.1	45
78	Vascular Effects of Multiwalled Carbon Nanotubes in Dyslipidemic ApoEâ^'/â^' Mice and Cultured Endothelial Cells. Toxicological Sciences, 2014, 138, 104-116.	1.4	94
79	Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles.	2.4	250