Frank O Aylward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3007761/publications.pdf

Version: 2024-02-01

49 papers 3,393 citations

236833 25 h-index 206029 48 g-index

97 all docs

97
docs citations

97 times ranked 4055 citing authors

#	Article	IF	CITATIONS
1	Complex marine microbial communities partition metabolism of scarce resources over the diel cycle. Nature Ecology and Evolution, 2022, 6, 218-229.	3.4	21
2	Infection strategy and biogeography distinguish cosmopolitan groups of marine jumbo bacteriophages. ISME Journal, 2022, 16, 1657-1667.	4.4	27
3	Genome size distributions in bacteria and archaea are strongly linked to evolutionary history at broad phylogenetic scales. PLoS Genetics, 2022, 18, e1010220.	1.5	20
4	The coevolutionary history of the microbial planet. Environmental Microbiology Reports, 2021, 13, 12-14.	1.0	0
5	ViralRecall—A Flexible Command-Line Tool for the Detection of Giant Virus Signatures in â€~Omic Data. Viruses, 2021, 13, 150.	1.5	45
6	Comparative Genomics and Environmental Distribution of Large dsDNA Viruses in the Family Asfarviridae. Frontiers in Microbiology, 2021, 12, 657471.	1.5	19
7	Particulate Metabolites and Transcripts Reflect Diel Oscillations of Microbial Activity in the Surface Ocean. MSystems, 2021, 6, .	1.7	29
8	Phylogenetic Signal, Congruence, and Uncertainty across Bacteria and Archaea. Molecular Biology and Evolution, 2021, 38, 5514-5527.	3.5	42
9	Historical forest disturbance mediates soil microbial community responses to drought. Environmental Microbiology, 2021, 23, 6405-6419.	1.8	10
10	High Transcriptional Activity and Diverse Functional Repertoires of Hundreds of Giant Viruses in a Coastal Marine System. MSystems, 2021, 6, e0029321.	1.7	30
11	Historical land use has long-term effects on microbial community assembly processes in forest soils. ISME Communications, $2021, 1, \ldots$	1.7	25
12	Identifying Virus-Like Regions in Microbial Genomes Using Hidden Markov Models., 2021,, 263-270.		0
13	Emergent properties of microbial communities drive accelerated biogeochemical cycling in disturbed temperate forests. Ecology, 2021, 102, e03553.	1.5	12
14	A phylogenomic framework for charting the diversity and evolution of giant viruses. PLoS Biology, 2021, 19, e3001430.	2.6	72
15	Timeâ€series metatranscriptomes reveal conserved patterns between phototrophic and heterotrophic microbes in diverse freshwater systems. Limnology and Oceanography, 2020, 65, S101.	1.6	18
16	Widespread endogenization of giant viruses shapes genomes of green algae. Nature, 2020, 588, 141-145.	13.7	96
17	A distinct lineage of Caudovirales that encodes a deeply branching multi-subunit RNA polymerase. Nature Communications, 2020, 11, 4506.	5.8	12
18	Heterotrophic Thaumarchaea with Small Genomes Are Widespread in the Dark Ocean. MSystems, 2020, 5, .	1.7	50

#	Article	IF	CITATIONS
19	Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses. Nature Communications, 2020, 11, 1710.	5.8	144
20	Periodic and coordinated gene expression between a diazotroph and its diatom host. ISME Journal, 2019, 13, 118-131.	4.4	29
21	Diel transcriptional response of a California Current plankton microbiome to light, low iron, and enduring viral infection. ISME Journal, 2019, 13, 2817-2833.	4.4	61
22	Strong Purifying Selection Is Associated with Genome Streamlining in Epipelagic Marinimicrobia. Genome Biology and Evolution, 2019, 11, 2887-2894.	1.1	30
23	Soil Bacterial and Fungal Communities Exhibit Distinct Long-Term Responses to Disturbance in Temperate Forests. Frontiers in Microbiology, 2019, 10, 2872.	1.5	37
24	Parallel Evolution of Genome Streamlining and Cellular Bioenergetics across the Marine Radiation of a Bacterial Phylum. MBio, $2018,9,1$	1.8	27
25	FastViromeExplorer: a pipeline for virus and phage identification and abundance profiling in metagenomics data. PeerJ, 2018, 6, e4227.	0.9	70
26	Diel cycling and long-term persistence of viruses in the ocean's euphotic zone. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11446-11451.	3.3	116
27	Environmental drivers of a microbial genomic transition zone in the ocean's interior. Nature Microbiology, 2017, 2, 1367-1373.	5.9	177
28	Coordinated regulation of growth, activity and transcription in natural populations of the unicellular nitrogen-fixing cyanobacterium Crocosphaera. Nature Microbiology, 2017, 2, 17118.	5.9	122
29	Bacteriophage Distributions and Temporal Variability in the Ocean's Interior. MBio, 2017, 8, .	1.8	76
30	Major changes in microbial diversity and community composition across gut sections of a juvenile Panchlora cockroach. PLoS ONE, 2017, 12, e0177189.	1.1	20
31	Improved Environmental Genomes via Integration of Metagenomic and Single-Cell Assemblies. Frontiers in Microbiology, 2016, 7, 143.	1.5	24
32	Wind and sunlight shape microbial diversity in surface waters of the North Pacific Subtropical Gyre. ISME Journal, 2016, 10, 1308-1322.	4.4	73
33	Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5443-5448.	3.3	225
34	Phylogenomic Analysis and Predicted Physiological Role of the Proton-Translocating NADH:Quinone Oxidoreductase (Complex I) Across Bacteria. MBio, 2015, 6, .	1.8	44
35	Enrichment and Broad Representation of Plant Biomass-Degrading Enzymes in the Specialized Hyphal Swellings of Leucoagaricus gongylophorus, the Fungal Symbiont of Leaf-Cutter Ants. PLoS ONE, 2015, 10, e0134752.	1.1	28
36	Convergent Bacterial Microbiotas in the Fungal Agricultural Systems of Insects. MBio, 2014, 5, e02077.	1.8	96

#	Article	IF	CITATIONS
37	The fungus gardens of leafâ€cutter ants undergo a distinct physiological transition during biomass degradation. Environmental Microbiology Reports, 2014, 6, 389-395.	1.0	21
38	Leucoagaricus gongylophorus Produces Diverse Enzymes for the Degradation of Recalcitrant Plant Polymers in Leaf-Cutter Ant Fungus Gardens. Applied and Environmental Microbiology, 2013, 79, 3770-3778.	1.4	98
39	Complete Genome of <i>Serratia</i> sp. Strain FGI 94, a Strain Associated with Leaf-Cutter Ant Fungus Gardens. Genome Announcements, 2013, 1, e0023912.	0.8	15
40	Comparison of 26 Sphingomonad Genomes Reveals Diverse Environmental Adaptations and Biodegradative Capabilities. Applied and Environmental Microbiology, 2013, 79, 3724-3733.	1.4	151
41	Mountain Pine Beetles Colonizing Historical and Na $ ilde{A}^-$ ve Host Trees Are Associated with a Bacterial Community Highly Enriched in Genes Contributing to Terpene Metabolism. Applied and Environmental Microbiology, 2013, 79, 3468-3475.	1.4	236
42	Complete Genome of <i>Enterobacteriaceae</i> Bacterium Strain FGI 57, a Strain Associated with Leaf-Cutter Ant Fungus Gardens. Genome Announcements, 2013, 1, .	0.8	4
43	The Genome Sequences of Cellulomonas fimi and "Cellvibrio gilvus―Reveal the Cellulolytic Strategies of Two Facultative Anaerobes, Transfer of "Cellvibrio gilvus―to the Genus Cellulomonas, and Proposal of Cellulomonas gilvus sp. nov. PLoS ONE, 2013, 8, e53954.	1.1	56
44	The Evolutionary Innovation of Nutritional Symbioses in Leaf-Cutter Ants. Insects, 2012, 3, 41-61.	1.0	51
45	Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens. ISME Journal, 2012, 6, 1688-1701.	4.4	126
46	The Complete Genome Sequence of Fibrobacter succinogenes S85 Reveals a Cellulolytic and Metabolic Specialist. PLoS ONE, 2011, 6, e18814.	1.1	199
47	An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity. PLoS Genetics, 2010, 6, e1001129.	1.5	213
48	Triassic origin and early radiation of multicellular volvocine algae. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3254-3258.	3.3	224
49	From Genetics to Genomics. , 0, , 255-266.		O