Cristian Andi Nicolae

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3007554/publications.pdf

Version: 2024-02-01

83 papers 1,926 citations

172386 29 h-index 276775 41 g-index

83 all docs 83 docs citations

83 times ranked 2543 citing authors

#	Article	IF	CITATIONS
1	Morpho-Structural, Thermal and Mechanical Properties of PLA/PHB/Cellulose Biodegradable Nanocomposites Obtained by Compression Molding, Extrusion, and 3D Printing. Nanomaterials, 2020, 10, 51.	1.9	87
2	Bacterial Nanocellulose from Side-Streams of Kombucha Beverages Production: Preparation and Physical-Chemical Properties. Polymers, 2017, 9, 374.	2.0	86
3	Thermal properties of water-resistant starch – polyvinyl alcohol films modified with cellulose nanofibers. Polymer Degradation and Stability, 2015, 121, 385-397.	2.7	75
4	Micro- and nano-mechanical characterization of polyamide 11 and its composites containing cellulose nanofibers. European Polymer Journal, 2013, 49, 3857-3866.	2.6	67
5	Influence of hemp fibers with modified surface on polypropylene composites. Journal of Industrial and Engineering Chemistry, 2016, 37, 137-146.	2.9	67
6	Plasticized poly(3â€hydroxybutyrate) with improved melt processing and balanced properties. Journal of Applied Polymer Science, 2017, 134, .	1.3	67
7	The effect of cellulose nanofibers on the crystallinity and nanostructure of poly(lactic acid) composites. Journal of Materials Science, 2016, 51, 9771-9791.	1.7	64
8	Influence of compatibilizing system on morphology, thermal and mechanical properties of high flow polypropylene reinforced with short hemp fibers. Composites Part B: Engineering, 2015, 69, 286-295.	5.9	59
9	Poly(3-hydroxybutyrate) Modified by Nanocellulose and Plasma Treatment for Packaging Applications. Polymers, 2018, 10, 1249.	2.0	59
10	Antireflective coating based on TiO2 nanoparticles modified with coupling agents via acid-catalyzed sol-gel method. Applied Surface Science, 2019, 487, 819-824.	3.1	51
11	Structural and morphological characterization of bacterial cellulose nano-reinforcements prepared by mechanical route. Materials and Design, 2016, 110, 790-801.	3.3	50
12	Thermal and mechanical properties of poly(3-hydroxybutyrate) reinforced with cellulose fibers from wood waste. Industrial Crops and Products, 2020, 145, 112071.	2.5	50
13	Optical and structural dynamical behavior of Crystal Violet Lactone – Phenolphthalein binary thermochromic systems. Dyes and Pigments, 2016, 134, 69-76.	2.0	47
14	Biocompatible polyhydroxyalkanoates/bacterial cellulose composites: Preparation, characterization, and <i>in vitro</i> evaluation. Journal of Biomedical Materials Research - Part A, 2016, 104, 2576-2584.	2.1	46
15	Isolation of cellulose nanocrystals from plum seed shells, structural and morphological characterization. Materials Letters, 2017, 194, 160-163.	1.3	46
16	Bacterial cellulose sponges obtained with green cross-linkers for tissue engineering. Materials Science and Engineering C, 2020, 110, 110740.	3.8	46
17	Cellulose defibrillation and functionalization by plasma in liquid treatment. Scientific Reports, 2018, 8, 15473.	1.6	43
18	High flow polypropylene/SEBS composites reinforced with differently treated hemp fibers for injection molded parts. Composites Part B: Engineering, 2019, 174, 107062.	5.9	42

#	Article	IF	Citations
19	Synthesis and properties of new epoxy-organolayered silicate nanocomposites. Applied Clay Science, 2015, 103, 28-33.	2.6	41
20	Medium Chain-Length Polyhydroxyalkanoate Copolymer Modified by Bacterial Cellulose for Medical Devices. Biomacromolecules, 2017, 18, 3222-3232.	2.6	39
21	Development of thermoplastic composites based on recycled polypropylene and waste printed circuit boards. Waste Management, 2020, 118, 391-401.	3.7	39
22	Adsorbents/ion exchangers-PVA blend membranes: Preparation, characterization and performance for the removal of Zn2+ by electrodialysis. Applied Surface Science, 2015, 329, 65-75.	3.1	38
23	The influence of alkyl substituents of POSS in polyethylene nanocomposites. Polymer, 2013, 54, 2347-2354.	1.8	36
24	Effect of SEBS on morphology, thermal, and mechanical properties of PP/organoclay nanocomposites. Polymer Bulletin, 2012, 69, 1073-1091.	1.7	35
25	Morphological investigation of PP/nanosilica composites containing SEBS. Polymer Testing, 2012, 31, 355-365.	2.3	35
26	NOVEL PVA PROTON CONDUCTING MEMBRANES DOPED WITH POLYANILINE GENERATED BY IN-SITU POLYMERIZATION. Electrochimica Acta, 2016, 211, 911-917.	2.6	34
27	Thermal and mechanical behavior of biodegradable polyester films containing cellulose nanofibers. Journal of Thermal Analysis and Calorimetry, 2019, 138, 2387-2398.	2.0	34
28	Effect of hemp fiber length on the mechanical and thermal properties of polypropylene/SEBS/hemp fiber composites. Journal of Materials Research and Technology, 2020, 9, 10768-10781.	2.6	33
29	Surface Treatment of Bacterial Cellulose in Mild, Eco-Friendly Conditions. Coatings, 2018, 8, 221.	1.2	30
30	Role of bacterial cellulose and poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate) in poly (3-hydroxybutyrate) blends and composites. Cellulose, 2018, 25, 5569-5591.	2.4	29
31	Treatment of Nanocellulose by Submerged Liquid Plasma for Surface Functionalization. Nanomaterials, 2018, 8, 467.	1.9	29
32	The effect of poly[styrene- <i>b</i> -(ethylene- <i>co</i> -butylene)- <i>b</i> -styrene] on dielectric, thermal, and morphological characteristics of polypropylene/silica nanocomposites. Polymer Engineering and Science, 2013, 53, 2081-2092.	1.5	26
33	Molecularly imprinted "bulk―copolymers as selective sorbents for gallic acid. Journal of Applied Polymer Science, 2013, 127, 366-374.	1.3	25
34	Aminopropyl-Silica Hybrid Particles as Supports for Humic Acids Immobilization. Materials, 2016, 9, 34.	1.3	25
35	Preparation and Characterization of Some Sol-Gel Modified Silica Coatings Deposited on Polyvinyl Chloride (PVC) Substrates. Coatings, 2021, 11, 11.	1.2	21
36	Morphological and Tribological Properties of PMMA/Halloysite Nanocomposites. Polymers, 2018, 10, 816.	2.0	20

#	Article	IF	CITATIONS
37	Synthesis and characterization of polymer-silica hybrid latexes and sol-gel-derived films. Applied Surface Science, 2016, 389, 666-672.	3.1	19
38	Surface properties, thermal, and mechanical characteristics of poly(vinyl alcohol)–starchâ€bacterial cellulose composite films. Journal of Applied Polymer Science, 2018, 135, 45800.	1.3	18
39	The Soil Biodegradability of Structured Composites Based on Cellulose Cardboard and Blends of Polylactic Acid and Polyhydroxybutyrate. Journal of Polymers and the Environment, 2021, 29, 2310-2320.	2.4	18
40	Influence of melt processing induced orientation on the morphology and mechanical properties of poly(styrene-b-ethylene/butylene-b-styrene) block copolymers and their composites with graphite. Materials & Design, 2014, 64, 694-705.	5.1	17
41	Low Molecular Weight and Polymeric Modifiers as Toughening Agents in Poly(3-Hydroxybutyrate) Films. Polymers, 2020, 12, 2446.	2.0	17
42	Block Copolymer Elastomer with Graphite Filler: Effect of Processing Conditions and Silane Coupling Agent on the Composite Properties. Polymers, 2018, 10, 46.	2.0	15
43	Poly(3-hydroxybutyrate) Modified by Plasma and TEMPO-Oxidized Celluloses. Polymers, 2020, 12, 1510.	2.0	14
44	Nanocomposites from functionalized bacterial cellulose and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polymer Degradation and Stability, 2020, 179, 109203.	2.7	14
45	Biocomposite foams based on polyhydroxyalkanoate and nanocellulose: Morphological and thermo-mechanical characterization. International Journal of Biological Macromolecules, 2020, 164, 1867-1878.	3.6	13
46	A facile hydrothermal route for the synthesis of \hat{l}_{\pm} -FeOOH with controlled morphology. Journal of Crystal Growth, 2012, 348, 40-46.	0.7	12
47	Recycled polypropylene with improved thermal stability and melt processability. Journal of Thermal Analysis and Calorimetry, 2019, 138, 2469-2480.	2.0	12
48	Bio-Based Polyamide 1010 with a Halogen-Free Flame Retardant Based on Melamine–Gallic Acid Complex. Polymers, 2020, 12, 1482.	2.0	11
49	Selecting the nature of imprinted molecular organosilica sieves with gallic acid via thermal analyses. Journal of Thermal Analysis and Calorimetry, 2014, 118, 1039-1048.	2.0	9
50	Molecularly imprinted poly(acrylonitrileâ€ <i>co</i> â€acrylic acid) matrix with sclareol. Polymer Engineering and Science, 2014, 54, 1484-1494.	1.5	9
51	Impact strength elastomer composites based on polystyrene components separated from waste electrical and electronic equipment. Journal of Applied Polymer Science, 2020, 137, 48329.	1.3	8
52	The effect of polystyrene blocks content and of type of elastomer blocks on the properties of block copolymer/layered silicate nanocomposites. Journal of Alloys and Compounds, 2014, 616, 569-576.	2.8	7
53	Polymer-clay nanocomposites obtained by solution polymerization of vinyl benzyl triammonium chloride in the presence of advanced functionalized clay. Journal of Chemical Sciences, 2014, 126, 609-616.	0.7	7
54	Thermal analyses as tools for proving the molecular imprinting with diosgenin and sclareol in acrylic copolymer matrices. Journal of Thermal Analysis and Calorimetry, 2015, 120, 1107-1118.	2.0	7

#	Article	IF	Citations
55	Aqueous Dispersions of Silica Stabilized with Oleic Acid Obtained by Green Chemistry. Nanomaterials, 2016, 6, 9.	1.9	7
56	Poly(lactic acid)/Poly(3-hydroxybutyrate) Biocomposites with Differently Treated Cellulose Fibers. Molecules, 2022, 27, 2390.	1.7	7
57	Switching behavior of thermochromic copper and silver tetraiodomercurate embedded in silica hybrid materials. Optical Materials, 2013, 35, 2565-2572.	1.7	6
58	Microfibrillated Cellulose Grafted with Metacrylic Acid as a Modifier in Poly(3-hydroxybutyrate). Polymers, 2021, 13, 3970.	2.0	6
59	Influence of octyl substituted octakis(dimethylsiloxy)octasilsesquioxane on the morphology and thermal and mechanical properties of low density polyethylene. Polymer International, 2014, 63, 228-236.	1.6	5
60	Comparative Study on the Behavior of Virgin and Recycled Polyolefins–Cellulose Composites in Natural Environmental Conditions. Journal of Composites Science, 2019, 3, 60.	1.4	5
61	Influence of microfibrillated cellulose and soft biocomponent on the morphology and thermal properties of thermoplastic polyurethanes. Journal of Applied Polymer Science, 2021, 138, 50951.	1.3	5
62	Effect of calcium stearate as a lubricant and catalyst on the thermal degradation of poly(3-hydroxybutyrate). International Journal of Biological Macromolecules, 2021, 190, 780-791.	3.6	5
63	Photophysical properties of some fluorescent materials containing 3-methoxy-7H-benzo[de]anthracen-7-one embedded in sol–gel silica hybrids. Optical Materials, 2015, 45, 55-63.	1.7	4
64	Molecularly Imprinted Bioâ€Membranes Based on Cellulose Nanoâ€Fibers for Drug Release and Selective Separations. Macromolecular Symposia, 2016, 359, 124-128.	0.4	4
65	Analytical Characterization and Potential Antimicrobial and Photocatalytic Applications of Metal-Substituted Hydroxyapatite Materials. Analytical Letters, 2019, 52, 2332-2347.	1.0	4
66	Influence of nonâ€metallic fraction of printed circuit boards waste on recycled polyvinyl chloride from waste wires. Journal of Applied Polymer Science, 2022, 139, 51469.	1.3	4
67	Effect of Modified Silica Materials on Polyvinyl Chloride (PVC) Substrates to Obtain Transparent and Hydrophobic Hybrid Coatings. Applied Sciences (Switzerland), 2021, 11, 11044.	1.3	4
68	Optical Behavior of Curcuminoid Hybrid Systems as Coatings Deposited on Polyester Fibers. Coatings, 2022, 12, 271.	1.2	4
69	Modeling the Properties of Curcumin Derivatives in Relation to the Architecture of the Siloxane Host Matrices. Materials, 2022, 15, 267.	1.3	2
70	<title>Functionalized Si/SiO<formula><inf><roman>2</roman></inf></formula> quantum dots</title> ., 2007,,.		1
71	Influence of Dicyclopentadiene Co-Polymers on the Hardening Processes and Properties of Portland Cement Composites. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 499-509.	1.9	1
72	Carbonaceous Nanostructures Obtained by Hydrothermal Conversion of Biomass. Proceedings (mdpi), 2019, 29, 56.	0.2	1

#	Article	IF	CITATIONS
73	Polymeric Nanofibers Manufactured by Electrospinning of Styrene-Ethylene-Butylene-Styrene (SEBS) Composites. Proceedings (mdpi), 2019, 29, .	0.2	1
74	Synthesis of New Elastomers with Controlled Structures Based on Alkylene Oxides, Grafted by ROMP. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2007, , 347-353.	0.1	1
75	The Effect of SEBS/Halloysite Masterbatch Obtained in Different Extrusion Conditions on the Properties of Hybrid Polypropylene/Glass Fiber Composites for Auto Parts. Polymers, 2021, 13, 3560.	2.0	1
76	New Applications of Ring-Opening Metathesis Polymerization for Grafting Alkylene Oxide-Based Copolymers. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 409-416.	0.5	0
77	Polariscopic and interferometric measurements of the mechanical stress. Proceedings of SPIE, 2012, , .	0.8	O
78	Nanofibres Obtained by Electrospinning from Thermoplastic Elastomer and Graphene Composites. Proceedings (mdpi), 2019, 29, 12.	0.2	0
79	Composites Based on Waste Printed Circuit Boards (WPCB) and Waste Polypropylene. Proceedings (mdpi), 2019, 29, 15.	0.2	O
80	Composites of Styrene-Butadiene Block Copolymer Reinforced with Waste Printed Circuit Boards (WPCB). Proceedings (mdpi), 2019, 29, 19.	0.2	0
81	Biopolymeric-Hydrothermal Carbon Beads for Decontamination of Polluted Waters. Proceedings (mdpi), 2019, 29, 50.	0.2	O
82	Effect of Different POSS Structures on Thermal and Morphological Properties of a Biodegradable Polyester. Proceedings (mdpi), 2019, 29, .	0.2	0
83	Preparation and Characterization of Highly Porous Cellulosic Foams for Biomedical Applications. Proceedings (mdpi), 2019, 29, 8.	0.2	O