
Massimo Attanasio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3007260/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nature Genetics, 2006, 38, 674-681.	21.4	535
2	Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nature Genetics, 2006, 38, 1397-1405.	21.4	510
3	Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. Nature Genetics, 2005, 37, 282-288.	21.4	367
4	In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Human Molecular Genetics, 2006, 15, 1847-1857.	2.9	353
5	Exome Capture Reveals ZNF423 and CEP164 Mutations, Linking Renal Ciliopathies to DNA Damage Response Signaling. Cell, 2012, 150, 533-548.	28.9	347
6	Nephronophthisis. Journal of the American Society of Nephrology: JASN, 2009, 20, 23-35.	6.1	332
7	Loss of GLIS2 causes nephronophthisis in humans and mice by increased apoptosis and fibrosis. Nature Genetics, 2007, 39, 1018-1024.	21.4	221
8	A Systematic Approach to Mapping Recessive Disease Genes in Individuals from Outbred Populations. PLoS Genetics, 2009, 5, e1000353.	3.5	144
9	Evidence of Oligogenic Inheritance in Nephronophthisis. Journal of the American Society of Nephrology: JASN, 2007, 18, 2789-2795.	6.1	141
10	DGKE Variants Cause a Glomerular Microangiopathy That Mimics Membranoproliferative GN. Journal of the American Society of Nephrology: JASN, 2013, 24, 377-384.	6.1	130
11	Individuals with mutations in XPNPEP3, which encodes a mitochondrial protein, develop a nephronophthisis-like nephropathy. Journal of Clinical Investigation, 2010, 120, 791-802.	8.2	102
12	Mutation analysis of NPHP6/CEP290 in patients with Joubert syndrome and Senior Loken syndrome. Journal of Medical Genetics, 2007, 44, 657-663.	3.2	93
13	Mutations of the Uromodulin gene in MCKD type 2 patients cluster in exon 4, which encodes three EGF-like domains. Kidney International, 2003, 64, 1580-1587.	5.2	87
14	Identification of the first AHI1 gene mutations in nephronophthisis-associated Joubert syndrome. Pediatric Nephrology, 2006, 21, 32-35.	1.7	87
15	Epithelial innate immunity mediates tubular cell senescence after kidney injury. JCl Insight, 2019, 4, .	5.0	78
16	Mutation analysis in nephronophthisis using a combined approach of homozygosity mapping, CEL I endonuclease cleavage, and direct sequencing. Human Mutation, 2008, 29, 418-426.	2.5	76
17	Persistent increase in mitochondrial superoxide mediates cisplatin-induced chronic kidney disease. Redox Biology, 2019, 20, 98-106.	9.0	76
18	Whole-exome resequencing distinguishes cystic kidney diseases from phenocopies in renal ciliopathies. Kidney International, 2014, 85, 880-887.	5.2	67

MASSIMO ATTANASIO

#	Article	IF	CITATIONS
19	Mutational analysis of theNPHP4 gene in 250 patients with nephronophthisis. Human Mutation, 2005, 25, 411-411.	2.5	60
20	Uromodulin is expressed in renal primary cilia and UMOD mutations result in decreased ciliary uromodulin expression. Human Molecular Genetics, 2010, 19, 1985-1997.	2.9	52
21	Promininâ \in controls stem cell activation by orchestrating ciliary dynamics. EMBO Journal, 2019, 38, .	7.8	47
22	Nephrocystin-3 is required for ciliary function in zebrafish embryos. American Journal of Physiology - Renal Physiology, 2010, 299, F55-F62.	2.7	45
23	Transcription Factor Hepatocyte Nuclear Factor-1β (HNF-1β) Regulates MicroRNA-200 Expression through a Long Noncoding RNA. Journal of Biological Chemistry, 2015, 290, 24793-24805.	3.4	42
24	Increased hedgehog signaling in postnatal kidney results in aberrant activation of nephron developmental programs. Human Molecular Genetics, 2011, 20, 4155-4166.	2.9	38
25	Mutations in ANKS6 Cause a Nephronophthisis-Like Phenotype with ESRD. Journal of the American Society of Nephrology: JASN, 2014, 25, 1653-1661.	6.1	37
26	Medullary cystic kidney disease type 1: mutational analysis in 37 genes based on haplotype sharing. Human Genetics, 2006, 119, 649-658.	3.8	34
27	Loss of Glis2/NPHP7 causes kidney epithelial cell senescence and suppresses cyst growth in the Kif3a mouse model of cystic kidney disease. Kidney International, 2016, 89, 1307-1323.	5.2	33
28	Hedgehog signaling indirectly affects tubular cell survival after obstructive kidney injury. American Journal of Physiology - Renal Physiology, 2015, 309, F770-F778.	2.7	31
29	Medullary cystic kidney disease type 1 in a large Native-American kindred. American Journal of Kidney Diseases, 2004, 44, 611-617.	1.9	27
30	Mapping a new suggestive gene locus for autosomal dominant nephrolithiasis to chromosome 9q33.2–q34.2 by total genome search for linkage. Nephrology Dialysis Transplantation, 2005, 20, 909-914.	0.7	26
31	Loss of diacylglycerol kinase epsilon in mice causes endothelial distress and impairs glomerular Cox-2 and PGE2 production. American Journal of Physiology - Renal Physiology, 2016, 310, F895-F908.	2.7	24
32	The genetic components of idiopathic nephrolithiasis. Pediatric Nephrology, 2011, 26, 337-346.	1.7	17
33	Innate Immune Signaling Contributes to Tubular Cell Senescence in the Glis2 Knockout Mouse Model of Nephronophthisis. American Journal of Pathology, 2020, 190, 176-189.	3.8	16
34	Detection of pro angiogenic and inflammatory biomarkers in patients with CKD. Scientific Reports, 2021, 11, 8786.	3.3	16
35	An EMT–primary cilium–GLIS2 signaling axis regulates mammogenesis and claudin-low breast tumorigenesis. Science Advances, 2021, 7, eabf6063.	10.3	14
36	Medullary cystic kidney disease type 1 in a large Native-American kindred. American Journal of Kidney Diseases, 2004, 44, 611-7.	1.9	11

3

#	Article	IF	CITATIONS
37	Loss of diacylglycerol kinase ε causes thrombotic microangiopathy by impairing endothelial VEGFA signaling. JCl Insight, 2021, 6, .	5.0	10
38	Ciliopathies and DNA damage. Current Opinion in Nephrology and Hypertension, 2015, 24, 1.	2.0	8
39	A splice site mutation in the <scp><i>TSEN2</i></scp> causes a new syndrome with craniofacial and central nervous system malformations, and atypical hemolytic uremic syndrome. Clinical Genetics, 2022, 101, 346-358.	2.0	4
40	Genetic Influences on Pediatric AKI. , 2021, , 123-131.		0
41	Individuals with mutations in XPNPEP3, which encodes a mitochondrial protein, develop a nephronophthisis-like nephropathy. Journal of Clinical Investigation, 2010, 120, 1362-1362.	8.2	0