Oneel Patel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/300714/publications.pdf Version: 2024-02-01

ONFEL DATEL

#	Article	IF	CITATIONS
1	Zinc Preconditioning Provides Cytoprotection following Iodinated Contrast Media Exposure in In Vitro Models. Contrast Media and Molecular Imaging, 2021, 2021, 1-6.	0.4	1
2	A pilot doubleâ€blind safety and feasibility randomized controlled trial of highâ€dose intravenous zinc in hospitalized COVIDâ€19 patients. Journal of Medical Virology, 2021, 93, 3261-3267.	2.5	43
3	Zinc supplementation as an adjunct therapy for COVIDâ€19: Challenges and opportunities. British Journal of Clinical Pharmacology, 2021, 87, 3737-3746.	1.1	37
4	The Protective Effect of Zinc Against Liver Ischaemia Reperfusion Injury in a Rat Model of Global Ischaemia. Journal of Clinical and Experimental Hepatology, 2020, 10, 228-235.	0.4	5
5	Randomised controlled trial for high-dose intravenous zinc as adjunctive therapy in SARS-CoV-2 (COVID-19) positive critically ill patients: trial protocol. BMJ Open, 2020, 10, e040580.	0.8	26
6	Experimental rat models for contrast-induced nephropathy; a comprehensive review. Journal of Nephropathology, 2020, 9, e12-e12.	0.1	0
7	Why is it worth testing the ability of zinc to protect against ischaemia reperfusion injury for human application. Metallomics, 2019, 11, 1330-1343.	1.0	16
8	Metformin may offer no protective effect in men undergoing external beam radiation therapy for prostate cancer. BJU International, 2019, 123, 36-42.	1.3	12
9	Preconditioning against renal ischaemia reperfusion injury: the failure to translate to the clinic. Journal of Nephrology, 2019, 32, 539-547.	0.9	12
10	Zinc ion dyshomeostasis increases resistance of prostate cancer cells to oxidative stress via upregulation of HIF11±. Oncotarget, 2018, 9, 8463-8477.	0.8	12
11	Targeting HIF-1 <i>α</i> to Prevent Renal Ischemia-Reperfusion Injury: Does It Work?. International Journal of Cell Biology, 2018, 2018, 1-7.	1.0	25
12	Zinc preconditioning protects against renal ischaemia reperfusion injury in a preclinical sheep large animal model. BioMetals, 2018, 31, 821-834.	1.8	16
13	Progastrin: a potential predictive marker of liver metastasis in colorectal cancer. International Journal of Colorectal Disease, 2017, 32, 1061-1064.	1.0	4
14	Protective effect of zinc preconditioning against renal ischemia reperfusion injury is dose dependent. PLoS ONE, 2017, 12, e0180028.	1.1	38
15	Zinc Ions Mediate Gastrin Expression, Proliferation, and Migration Downstream of the Cholecystokinin-2 Receptor. Endocrinology, 2016, 157, 4706-4719.	1.4	10
16	FRAX597, a PAK1 inhibitor, synergistically reduces pancreatic cancer growth when combined with gemcitabine. BMC Cancer, 2016, 16, 24.	1.1	44
17	Gastrin-Releasing Peptide. , 2016, , 1858-1862.		0
18	HIF1α Expression under Normoxia in Prostate Cancer— Which Pathways to Target?. Journal of Urology, 2015, 193, 763-770.	0.2	40

Oneel Patel

#	Article	IF	CITATIONS
19	Activation by zinc of the human gastrin gene promoter in colon cancer cells in vitro and in vivo. Metallomics, 2015, 7, 1390-1398.	1.0	15
20	Identification of binding sites for <scp>C</scp> â€ŧerminal proâ€gastrinâ€releasing peptide (<scp>GRP</scp>)â€derived peptides in renal cell carcinoma: a potential target for future therapy. BJU International, 2015, 115, 829-838.	1.3	4
21	The effects of nonspecific <scp>HIF</scp> 1 <i>$\hat{I} \pm \langle i \rangle$ inhibitors on development of castrate resistance and metastases in prostate cancer. Cancer Medicine, 2014, 3, 245-251.</i>	1.3	36
22	Zinc ions upregulate the hormone gastrin via an E-box motif in the proximal gastrin promoter. Journal of Molecular Endocrinology, 2014, 52, 29-42.	1.1	20
23	Expression and function of gastrinâ€releasing peptide (<scp>GRP</scp>) in normal and cancerous urological tissues. BJU International, 2014, 113, 40-47.	1.3	32
24	Gastrin mediates resistance to hypoxia-induced cell death in xenografts of the human colorectal cancer cell line LoVo. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2471-2480.	1.9	9
25	Normoxic regulation of HIF-1Î \pm in prostate cancer. Nature Reviews Urology, 2014, 11, 419-419.	1.9	22
26	Gastrin-Releasing Peptide. , 2014, , 1-5.		0
27	The C-terminal flanking peptide of progastrin induces gastric cell apoptosis and stimulates colonic cell division in vivo. Peptides, 2013, 46, 83-93.	1.2	5
28	P21-activated kinase 1 promotes colorectal cancer survival by up-regulation of hypoxia-inducible factor-11±. Cancer Letters, 2013, 340, 22-29.	3.2	27
29	The Role of Hypoxia-Inducible Factor 1α in Determining the Properties of Castrate-Resistant Prostate Cancers. PLoS ONE, 2013, 8, e54251.	1.1	70
30	Effects of angiotensin-converting enzyme (ACE) inhibitors on the outcomes of patients receiving primary radiotherapy for prostate cancer (PC) Journal of Clinical Oncology, 2013, 31, e16016-e16016.	0.8	0
31	Pro-GRP-Derived Peptides Are Expressed in Colorectal Cancer Cells and Tumors and Are Biologically Active in Vivo. Endocrinology, 2012, 153, 1082-1092.	1.4	10
32	Induction of Gastrin Expression in Gastrointestinal Cells by Hypoxia or Cobalt Is Independent of Hypoxia-Inducible Factor (HIF). Endocrinology, 2012, 153, 3006-3016.	1.4	15
33	Hypoxia-inducible factor 1α: A screening tool for predicting development of castrate resistant prostate cancer Journal of Clinical Oncology, 2012, 30, e15117-e15117.	0.8	0
34	Ferric ions inhibit proteolytic processing of progastrin. Biochemical and Biophysical Research Communications, 2011, 404, 1083-1087.	1.0	4
35	Gastrin-Releasing Peptide. , 2011, , 1508-1511.		0
36	Evolution of gastrointestinal hormones: the cholecystokinin/gastrin family. Current Opinion in Endocrinology, Diabetes and Obesity, 2010, 17, 77-88.	1.2	27

ONEEL PATEL

#	Article	IF	CITATIONS
37	The C-terminal flanking peptide (CTFP) of progastrin inhibits apoptosis via a PI3-kinase-dependent pathway. Regulatory Peptides, 2010, 165, 224-231.	1.9	6
38	Gastrin increases its own synthesis in gastrointestinal cancer cells via the CCK2 receptor. FEBS Letters, 2010, 584, 4413-4418.	1.3	23
39	Gastrinâ€releasing peptide: Different forms, different functions. BioFactors, 2009, 35, 69-75.	2.6	42
40	C-Terminal Fragments of the Gastrin-Releasing Peptide Precursor Stimulate Cell Proliferation via a Novel Receptor. Endocrinology, 2007, 148, 1330-1339.	1.4	26
41	Phylogenetic analysis of the sequences of gastrin-releasing peptide and its receptors: Biological implications. Regulatory Peptides, 2007, 143, 1-14.	1.9	22
42	Recombinant C-terminal fragments of the gastrin-releasing peptide precursor are bioactive. Cancer Letters, 2007, 254, 87-93.	3.2	12
43	Production, Secretion, and Biological Activity of the C-Terminal Flanking Peptide of Human Progastrin. Gastroenterology, 2006, 131, 1463-1474.	0.6	20
44	Gastrin-releasing peptide and cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2006, 1766, 23-41.	3.3	113
45	Synthesis, Expression and Biological Activity of the Prohormone for Gastrin Releasing Peptide (ProGRP). Endocrinology, 2006, 147, 502-509.	1.4	31
46	Stimulation of proliferation and migration of a colorectal cancer cell line by amidated and glycine-extended gastrin-releasing peptide via the same receptor. Biochemical Pharmacology, 2004, 68, 2129-2142.	2.0	30