List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3007051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Primary, secondary, and tertiary amines for CO2 capture: Designing for mesoporous CO2 adsorbents. Journal of Colloid and Interface Science, 2011, 361, 594-602.	9.4	214
2	Immobilization of poly(ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation. Biomaterials, 2001, 22, 2115-2123.	11.4	132
3	Encapsulation of Phase Change Material with Water-Absorbable Shell for Thermal Energy Storage. ACS Sustainable Chemistry and Engineering, 2015, 3, 2874-2881.	6.7	66
4	Design of High Efficiency Chelate Fibers with an Amine Group To Remove Heavy Metal Ions and pH-Related FT-IR Analysis. Industrial & Engineering Chemistry Research, 2004, 43, 2060-2066.	3.7	65
5	CeO2-covered nanofiber for highly efficient removal of phosphorus from aqueous solution. Journal of Hazardous Materials, 2016, 307, 91-98.	12.4	56
6	Amines immobilized double-walled silica nanotubes for CO2 capture. Journal of Hazardous Materials, 2013, 250-251, 53-60.	12.4	53
7	FT-IR and Isotherm Study on Anion Adsorption onto Novel Chelating Fibers. Macromolecular Rapid Communications, 2002, 23, 535.	3.9	52
8	Gelation of Chitin and Chitosan Dispersed Suspensions under Electric Field: Effect of Degree of Deacetylation. ACS Applied Materials & amp; Interfaces, 2011, 3, 1289-1298.	8.0	42
9	Hierarchically Porous Aminosilica Monolith as a CO ₂ Adsorbent. ACS Applied Materials & Interfaces, 2014, 6, 12988-12996.	8.0	42
10	Removal of Cu(II) and Cr(VI) ions from aqueous solution using chelating fiber packed column: Equilibrium and kinetic studies. Journal of Hazardous Materials, 2011, 194, 92-99.	12.4	39
11	Novel synthesis and characterization of activated carbon fiber and dye adsorption modeling. Carbon, 2002, 40, 2661-2672.	10.3	37
12	Effects of Liquid Bridge between Colloidal Spheres and Evaporation Temperature on Fabrication of Colloidal Multilayers. Journal of Physical Chemistry B, 2007, 111, 1545-1551.	2.6	36
13	Core/shell hybrid fiber with aminated PAN and Fe2O3 as a high-capacity adsorbent for phosphate ions. Journal of Hazardous Materials, 2019, 378, 120726.	12.4	30
14	Surface-grafting of phosphates onto a polymer for potential biomimetic functionalization of biomaterials. Journal of Colloid and Interface Science, 2009, 330, 77-83.	9.4	27
15	Fourier transform infrared spectroscopy study of the effect of pH on anion and cation adsorption onto poly(acrylo-amidino diethylenediamine). Journal of Polymer Science Part A, 2004, 42, 2010-2018.	2.3	26
16	Securely anchored Prussian blue nanocrystals on the surface of porous PAAm sphere for high and selective cesium removal. Journal of Hazardous Materials, 2021, 420, 126654.	12.4	25
17	Positive and Negative Electrorheological Response of Alginate Salts Dispersed Suspensions under Electric Field. ACS Applied Materials & amp; Interfaces, 2013, 5, 1122-1130.	8.0	22
18	Synthesis and characteristics of novel chelate fiber containing amine and amidine groups. Polymers for Advanced Technologies, 2004, 15, 459-466.	3.2	21

#	Article	IF	CITATIONS
19	Fabrication of colloidal crystals on hydrophilic/hydrophobic surface by spin-coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 385, 188-194.	4.7	21
20	Trembling Shear Behavior of a Modifiedâ€Chitosan Dispersed Suspension under an Electric Field and its Model Study. Macromolecular Chemistry and Physics, 2008, 209, 890-899.	2.2	19
21	Influence of particle size on shear behavior of amine-group-immobilized polyacrylonitrile dispersed suspension under electric field. Journal of Colloid and Interface Science, 2009, 335, 183-188.	9.4	19
22	Gelation of natural polymer dispersed suspensions under electric field. Soft Matter, 2012, 8, 253-259.	2.7	18
23	Dipolar-molecule complexed chitosan carboxylate, phosphate, and sulphate dispersed electrorheological suspensions. Soft Matter, 2012, 8, 6273.	2.7	18
24	Chemical structure designing to enhance the yield stress of electrorheological fluids based on modified chitosan compounds. Journal of Applied Polymer Science, 2004, 93, 1559-1566.	2.6	17
25	Observation of metal ions adsorption on novel polymeric chelating fiber and activated carbon fiber. Separation and Purification Technology, 2007, 57, 338-347.	7.9	17
26	Electrorheological Performance of Chitosan Phosphate Suspension. Polymer Journal, 2000, 32, 501-504.	2.7	15
27	Novel synthesis and electrorheological properties of monodispersed submicron-sized hollow polyaniline dicarboxylate salt form suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 292, 217-223.	4.7	15
28	Highly Durable and Thermally Conductive Shell-Coated Phase-Change Capsule as a Thermal Energy Battery. ACS Applied Materials & Interfaces, 2020, 12, 5759-5766.	8.0	15
29	Spent coffee grounds: Massively supplied carbohydrate polymer applicable to electrorheology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562, 392-401.	4.7	14
30	Molecular interaction mechanism in solid polymer electrolyte comprising cellulose phthalate and LiClO4. Solid State Ionics, 2010, 181, 1178-1182.	2.7	13
31	Cu2+ sequestration by amine-functionalized silica nanotubes. Journal of Hazardous Materials, 2013, 260, 489-497.	12.4	13
32	Electrorheological properties of aminated chitosans. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 305, 120-125.	4.7	12
33	Influence of metal ion on electrorheological properties of carboxyl-group-immobilized chitosan dispersed suspension under electric field. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 371, 76-80.	4.7	12
34	Negative electrorheological fluids. Journal of Rheology, 2013, 57, 1655-1667.	2.6	12
35	Influence of amine- and sulfonate-functional groups on electrorheological behavior of polyacrylonitrile dispersed suspension. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 514, 56-62.	4.7	12
36	Characterization of Surface Properties and Cytocompatibility of Ion-etched Chitosan Films. Langmuir, 2012, 28, 7223-7232.	3.5	11

#	Article	IF	CITATIONS
37	Combustion/absorption process for the separation of 14 C and 3 H in radwastes released from nuclear power plants and their analysis. Journal of Hazardous Materials, 2017, 331, 13-20.	12.4	11
38	Formation of oriented fishbone-like pores in biodegradable polymer scaffolds using directional phase-separation processing. Scientific Reports, 2020, 10, 14472.	3.3	10
39	Cu Crystal Growth on a Chelating Fiber with Different Amine Chain Lengths. Macromolecular Rapid Communications, 2004, 25, 1324-1329.	3.9	9
40	Electrorheological properties of chemically modified chitosan suspension with various functional pendants. Journal of Applied Polymer Science, 2006, 102, 4937-4942.	2.6	9
41	Line-patterning of polyaniline coated MWCNT on stepped substrates using DC electric field. Scientific Reports, 2014, 4, 6656.	3.3	9
42	Sequential separation method for the determination of uranium and thorium in soil using diamyl amylphosphonate and Aliquat®336 impregnated polymer resins. Reactive and Functional Polymers, 2016, 106, 43-50.	4.1	9
43	Electrorheological properties of algae dispersed suspension: New application of harmful algae. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539, 354-363.	4.7	9
44	Study on syntheses of phosphates and transition-metal complexes on viscose rayon felt for flame retardancy. Journal of Polymer Science Part A, 2000, 38, 2815-2823.	2.3	8
45	Adsorption and equilibrium adsorption modeling of bivalent metal cations on viscose rayon succinate at different pHs. Reactive and Functional Polymers, 2007, 67, 312-321.	4.1	8
46	Smart glass substrate as colorimetric chemosensor for highly selective detection of silver ion. Sensors and Actuators B: Chemical, 2013, 177, 1107-1114.	7.8	8
47	Characterizations of electrodeposited uranium layer on stainless steel disc. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 487, 121-130.	4.7	8
48	Preparation and characterization of electrodeposited layers as alpha sources for alpha-particle spectrometry. Journal of Radioanalytical and Nuclear Chemistry, 2020, 326, 861-877.	1.5	8
49	Designing particle size of aminated polyacrylonitrile spheres to enhance electrorheological performances of their suspensions. Powder Technology, 2021, 394, 986-995.	4.2	8
50	Designing large-sized and spherical CO2 adsorbents for highly reversible CO2 capture and low pressure drop. Chemical Engineering Journal, 2022, 427, 131781.	12.7	8
51	Nanofibrous spherical cage mimicking a ball of pearl necklaces for super capture of heavy metal ions. Journal of Materials Chemistry A, 2021, 9, 17281-17291.	10.3	8
52	Bowing Effect with Fluorescence: A Unique Chemosensor for the Silver Ion. Industrial & Engineering Chemistry Research, 2006, 45, 656-662.	3.7	7
53	The mixing effect of amine and carboxyl groups on electrorheological properties and its analysis by in situ FT-IR under an electric field. Physical Chemistry Chemical Physics, 2013, 15, 16527.	2.8	7
54	Design of negative electrorheological materials inspired by electrophoretic separation of biomolecules. Journal of Materials Chemistry C, 2017, 5, 11683-11693.	5.5	7

#	Article	IF	CITATIONS
55	Growth of oriented p-aminobenzoic acid crystals by directional freezing. CrystEngComm, 2012, 14, 7891.	2.6	6
56	Diverse applications of fibers surface-functionalized with nano- and microparticles. Composites Science and Technology, 2013, 79, 77-86.	7.8	6
57	Switchable electrorheological activity of polyacrylonitrile microspheres by thermal treatment: from negative to positive. Soft Matter, 2018, 14, 8912-8923.	2.7	6
58	Pinecone-like Cu(II) crystal growth on the surface of amine-group-immobilized polymers. Journal of Polymer Science Part A, 2005, 43, 1238-1247.	2.3	5
59	Confirmation of heavy metal ions in used lubricating oil from a passenger car using chelating self-assembled monolayer. Journal of Colloid and Interface Science, 2006, 301, 27-31.	9.4	4
60	Physicochemical and thermal studies of viscose rayon borate fiber and its carbon fiber. Journal of Polymer Science Part A, 2001, 39, 3875-3883.	2.3	3
61	Optimization of Scaffold for a Successful Hydrogel-Seeding Method for Vascular Tissue Engineering. Key Engineering Materials, 2007, 342-343, 333-336.	0.4	3
62	Preparation of PLLA/PBAT-strengthened degradable expanded polystyrene. Polymer Engineering and Science, 2017, 57, 883-890.	3.1	3
63	Equilibrium adsorption model of anions onto a novel synthesized chelating fiber under various pHs and Fourier transform infrared study of these adsorptions. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2430-2440.	2.1	2
64	Synthesis, Thermalâ€Induced Phase Separation, and Solventâ€Induced Switching Behavior of Novel Ionic Polymer Based on Sulfonated Poly(Ethyleneâ€ <i>co</i> â€Vinyl Alcohol) for Li Ion Recovery. Macromolecular Chemistry and Physics, 2011, 212, 1443-1450.	2.2	1
65	Effect of pH on Cu(II) crystal growth onto the surface of chelating fiber. Applied Physics Letters, 2011, 99, 094102.	3.3	1
66	Characterization of the Gel-Spun Tubular Scaffold for Cardiovascular Tissue Engineering. Key Engineering Materials, 2007, 342-343, 321-324.	0.4	0
67	Rotation of charged polymer particles for potential applications in micro-propulsion systems. Journal of Materials Chemistry C, 2020, 8, 16339-16348.	5.5	0
68	Reusable selective sensing-substrate for ultrasensitive and rapid detection of uranium radioisotopes. Journal of Environmental Chemical Engineering, 2021, 9, 105983.	6.7	0
69	MODEL STUDY FOR SHEAR BEHAVIOR OF BENZENE RING OR TRIAZINE GROUP IMMOBILIZED CHITOSAN DISPERSED SUSPENSION AS ER FLUIDS. , 2011, , .		0
70	INFLUENCE OF ALKYL CHAIN LENGTH ON CARBOXYL-GROUP-IMMOBILIZED HOLLOW POLYANILINE SPHERES DISPERSED SUSPENSION UNDER AN ELECTRIC FIELD. , 2011, , .		0