Jacques Muzart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3006292/publications.pdf Version: 2024-02-01

LACOHES MUZART

#	Article	IF	CITATIONS
1	Intermolecular Dehydrogenative Heck Reactions. Chemical Reviews, 2011, 111, 1170-1214.	47.7	950
2	Palladium-catalysed oxidation of primary and secondary alcohols. Tetrahedron, 2003, 59, 5789-5816.	1.9	403
3	Gold-catalysed reactions of alcohols: isomerisation, inter- and intramolecular reactions leading to C–C and C–heteroatom bonds. Tetrahedron, 2008, 64, 5815-5849.	1.9	397
4	N,N-Dimethylformamide: much more than a solvent. Tetrahedron, 2009, 65, 8313-8323.	1.9	351
5	Palladium-catalysed reactions of alcohols. Part B: Formation of C–C and C–N bonds from unsaturated alcohols. Tetrahedron, 2005, 61, 4179-4212.	1.9	298
6	lonic Liquids as Solvents for Catalyzed Oxidations of Organic Compounds. Advanced Synthesis and Catalysis, 2006, 348, 275-295.	4.3	201
7	Procedures for and Possible Mechanisms of Pdâ€Catalyzed Allylations of Primary and Secondary Amines with Allylic Alcohols. European Journal of Organic Chemistry, 2007, 2007, 3077-3089.	2.4	163
8	Oneâ€Pot Syntheses of α,βâ€Unsaturated Carbonyl Compounds through Palladiumâ€Mediated Dehydrogenation of Ketones, ÂAldehydes, Esters, Lactones and Amides. European Journal of Organic Chemistry, 2010, 2010, 3779-3790.	2.4	162
9	Palladium-catalysed reactions of alcohols. Part C: Formation of ether linkages. Tetrahedron, 2005, 61, 5955-6008.	1.9	159
10	Aldehydes from Pd-catalysed oxidation of terminal olefins. Tetrahedron, 2007, 63, 7505-7521.	1.9	148
11	Palladium-catalysed inter- and intramolecular formation of C–O bonds from allenes. Chemical Society Reviews, 2014, 43, 3003-3040.	38.1	139
12	Molecular Oxygen To Regenerate PdII Active Species. Chemistry - an Asian Journal, 2006, 1, 508-515.	3.3	122
13	Silyl Ethers as Protective Groups for Alcohols: Oxidative Deprotection and Stability under Alcohol Oxidation Conditions. Synthesis, 1993, 1993, 11-27.	2.3	109
14	Palladium-catalysed reactions of alcohols. Part D: Rearrangements, carbonylations, carboxylations and miscellaneous reactions. Tetrahedron, 2005, 61, 9423-9463.	1.9	109
15	Heck arylation of allylic alcohols in molten salts. Journal of Organometallic Chemistry, 2001, 634, 153-156.	1.8	95
16	Highly enantioselective photodeconjugation of .alpha.,.betaunsaturated esters. Origin of the chiral discrimination. Journal of the American Chemical Society, 1990, 112, 9263-9272.	13.7	92
17	Practical chromiumVI oxide-catalyzed benzylic oxidations using 70% tert-butylhydroperoxide. Tetrahedron Letters, 1987, 28, 2131-2132.	1.4	86
18	Pd-catalyzed reduction of aryl halides using dimethylformamide as the hydride source. Tetrahedron Letters, 2007, 48, 6738-6742.	1.4	84

#	Article	IF	CITATIONS
19	Enantioselective allylic oxidation in the presence of the catalytic system. Tetrahedron: Asymmetry, 1995, 6, 147-156.	1.8	83
20	BrÃ,nsted-acid-catalyzed coupling of electron-rich arenes with substituted allylic and secondary benzylic alcohols. Tetrahedron, 2007, 63, 7942-7948.	1.9	83
21	Sodium Perborate and Sodium Percarbonate in Organic Synthesis. Synthesis, 1995, 1995, 1325-1347.	2.3	77
22	Asymmetric protonation of enolic species: dramatic increase in the selectivity with temperature and unexpected Eyring diagram. Tetrahedron: Asymmetry, 1997, 8, 381-389.	1.8	73
23	Palladium-Catalyzed Allylic Acyloxylation of Terminal Alkenes in the Presence of a Base. Journal of Organic Chemistry, 2010, 75, 1771-1774.	3.2	71
24	Palladium(II)-mediated oxidation of alcohols using 1,2-dichloroethane as Pd(O) reoxidant. Tetrahedron Letters, 1995, 36, 2473-2476.	1.4	70
25	Pdâ€Catalyzed Hydrogenâ€Transfer Reactions from Alcohols to C=C, C=O, and C=N Bonds. European Journal of Organic Chemistry, 2015, 2015, 5693-5707.	2.4	70
26	Palladium-Catalyzed Dehydrogenative Coupling of Furans with Styrenes. Organic Letters, 2009, 11, 4096-4099.	4.6	69
27	Enantioselective copper-catalyzed allylic acetoxylation of cyclohexene. Journal of Molecular Catalysis, 1991, 64, 381-384.	1.2	63
28	Production of Csp ³ –Csp ³ Bonds through Palladium atalyzed Tsuji–Trostâ€Type Reactions of (Hetero)Benzylic Substrates. European Journal of Organic Chemistry, 2016, 2016, 2565-2593.	2.4	63
29	Palladium nanoparticles obtained from palladium salts and tributylamine in molten tetrabutylammonium bromide: their use for hydrogenolysis-free hydrogenation of olefins. New Journal of Chemistry, 2004, 28, 1550-1553.	2.8	62
30	Enantioselective Protonation of a Simple Enol: Aminoalcohol-Catalyzed Ketonization of a Photochemically Produced 2-Methylinden-3-ol. Angewandte Chemie International Edition in English, 1991, 30, 416-418.	4.4	59
31	"Click―Glycodendrimers Containing 27, 81, and 243 Modified Xylopyranoside Termini. Journal of Organic Chemistry, 2009, 74, 5071-5074.	3.2	56
32	Telomerization of Butadiene withL-Arabinose andD-Xylose in DMF: Selective Formation of their Monooctadienyl Glycosides. European Journal of Organic Chemistry, 2004, 2004, 2914-2922.	2.4	53
33	Telomerization of butadiene with pentoses in water: selective etherifications. Green Chemistry, 2005, 7, 219-223.	9.0	53
34	Three to seven C–C or C–heteroatom bonds from domino reactions involving a Heck process. Tetrahedron, 2013, 69, 6735-6785.	1.9	53
35	Palladium-catalyzed cleavage of prochiral enol carbonates: Enantioselective ketonisation of resulting enols. Tetrahedron: Asymmetry, 1992, 3, 1161-1164.	1.8	52
36	Chromium-exchanged zeolite (CrE-ZSM-5) as catalyst for alcohol oxidation and benzylic oxidation with t-BuOOH. Applied Catalysis A: General, 2006, 309, 270-272.	4.3	52

#	Article	IF	CITATIONS
37	Ubiquitous Benzoquinones, Multitalented Compounds for Palladium atalyzed Oxidative Reactions. European Journal of Organic Chemistry, 2015, 2015, 4053-4069.	2.4	52
38	Photoreactivity of \hat{I} ±-tetrasubstituted arylketones: Production and asymmetric tautomerization of arylenols. Tetrahedron, 1994, 50, 2849-2864.	1.9	47
39	ChromiumVI oxide â^'70% tert.butyl hydroperoxide, a simple catalytic system for oxidation of alcohols to carbonyl compounds. Tetrahedron Letters, 1987, 28, 2133-2134.	1.4	46
40	The Heck-type arylation of allylic alcohols with arenediazonium salts. Journal of Organometallic Chemistry, 2005, 690, 3822-3826.	1.8	46
41	Mechanistic Insights into the PalladiumII-Catalyzed Hydroxyalkoxylation of 2-Allylphenols. Journal of Organic Chemistry, 2007, 72, 1859-1862.	3.2	46
42	Effective chromium-mediated oxidation of allylic and benzylic alcohols by sodium percarbonate. Tetrahedron Letters, 1994, 35, 1989-1990.	1.4	45
43	Catalytic asymmetric protonation of fluoro-enolic species: access to optically active 2-fluoro-1-tetralone. Tetrahedron: Asymmetry, 2003, 14, 2755-2761.	1.8	45
44	Production of optically active ketones by a palladium-induced cascade reaction from racemic β-ketoesters Tetrahedron: Asymmetry, 1994, 5, 1321-1326.	1.8	44
45	Allylic Substitution Mediated by Water and Palladium:Â Unusual Role of a Palladium(II) Catalyst and ESI-MS Analysis. Organometallics, 2004, 23, 4796-4799.	2.3	44
46	On the behavior of amines in the presence of PdO and PdII species. Journal of Molecular Catalysis A, 2009, 308, 15-24.	4.8	44
47	Recent Uses of N,N-Dimethylformamide and N,N-Dimethylacetamide as Reagents. Molecules, 2018, 23, 1939.	3.8	44
48	Chromium(VI)-catalyzed benzylic oxidations with commercial t-butylhydroperoxide or hydrogen peroxide. Journal of Molecular Catalysis, 1991, 66, 155-161.	1.2	42
49	Synergy or Competition between Palladium-Catalysis and KF/Alumina-Mediation for the Allylic Substitution of the Acetates of Baylis–Hillman Adducts by Phenols. Tetrahedron, 2000, 56, 8133-8140.	1.9	41
50	Catalysed Asymmetric Protonation of Simple Linear Keto-Enolic Species â^' A Route to Chiral α-Arylpropionic Acids. European Journal of Organic Chemistry, 2002, 2002, 3986-3994.	2.4	41
51	Palladium-catalyzed dehydrogenation of benzylic alcohols in molten ammonium salts, a recyclable system. Tetrahedron Letters, 2002, 43, 6641-6644.	1.4	41
52	The isoinversion principle for the asymmetric tautomerization of photodienols Tetrahedron: Asymmetry, 1993, 4, 2531-2534.	1.8	40
53	A new catalytic method for the synthesis of selectively substituted biphenyls containing an oxoalkyl chain. Journal of Organometallic Chemistry, 2003, 687, 473-482.	1.8	38
54	β-Elimination competitions leading to CC bonds from alkylpalladium intermediates. Tetrahedron, 2012, 68, 10065-10113.	1.9	38

#	Article	IF	CITATIONS
55	Access to racemic and enantioenriched 3-methyl-4-chromanones: catalysed asymmetric protonation of corresponding enolic species as the key step. Tetrahedron, 2003, 59, 9641-9648.	1.9	37
56	Preparation of a hybrid organic–inorganic material containing macrocyclic triolefinic 15-membered palladium(0) complexCatalytic activity in Suzuki cross-coupling and butadiene telomerization reactions. Applied Catalysis A: General, 2006, 297, 117-124.	4.3	37
57	Palladium nanoparticles-catalyzed regio- and chemoselective hydrogenolysis of benzylic epoxides in water. Green Chemistry, 2007, 9, 326.	9.0	37
58	Pd-mediated epoxidation of olefins. Journal of Molecular Catalysis A, 2007, 276, 62-72.	4.8	37
59	C–O Bonds from Pd atalyzed C(sp ³)–H Reactions Mediated by Heteroatomic Groups. European Journal of Organic Chemistry, 2018, 2018, 1176-1203.	2.4	37
60	Water-mediated transition-metal-free Tsuji–Trost-type reaction. Tetrahedron Letters, 2003, 44, 8099-8102.	1.4	36
61	Improved chromium-catalyzed allylic oxidation of Δ5-steroids with t-butyl hydroperoxide. Journal of Molecular Catalysis A, 2006, 250, 70-74.	4.8	36
62	Palladium nanoparticles-catalyzed chemoselective hydrogenations, a recyclable system in water. Tetrahedron Letters, 2007, 48, 8128-8131.	1.4	36
63	Enantioselective hydrogenation of î±,î²-unsaturated ketones over palladium on charcoal in the presence of (â^')-ephedrine. Tetrahedron: Asymmetry, 1996, 7, 975-976.	1.8	34
64	Effects of the reactants concentration in the butadiene telomerization with d-xylose and parallel influence of triethylamine as additive. Journal of Molecular Catalysis A, 2006, 244, 93-98.	4.8	34
65	Asymmetric photodeconjugation of ammonium ene-carboxylates: temperature effects and evidence for the α-carbon of the dienolic species as a latent trigonal centre. Tetrahedron: Asymmetry, 2000, 11, 2037-2044.	1.8	33
66	Palladium-mediated enantioselective formation of 2-methyltetral-1-one from the corresponding allyl or benzyl enol carbonate in the presence of enantiopure aminoalcohols. Tetrahedron: Asymmetry, 1995, 6, 1865-1868.	1.8	32
67	Mechanistic Insights into the Palladium-Induced Domino Reaction Leading to Ketones from Benzyl β-Ketoesters: First Characterization of the Enol as an Intermediate. Journal of Organic Chemistry, 2004, 69, 6528-6532.	3.2	32
68	Neutral pentosides surfactants issued from the butadiene telomerization with pentoses: preparation and amphiphilic properties. Carbohydrate Research, 2006, 341, 1938-1944.	2.3	32
69	Palladiumâ€Catalyzed Domino Dehydrogenation/Heckâ€Type Reactions of Carbonyl Compounds. Advanced Synthesis and Catalysis, 2018, 360, 2411-2428.	4.3	32
70	Water-promoted iodocyclisation of 2-allylphenols. Green Chemistry, 2006, 8, 522.	9.0	31
71	Ligandâ€Promoted Reactivity of Alkenes in Dehydrogenative Heck Reactions of Furans and Thiophenes. European Journal of Organic Chemistry, 2015, 2015, 944-948.	2.4	31
72	Access to optically active linear ketones by one-pot catalytic deprotection, decarboxylation, asymmetric tautomerization from racemic benzyl β-ketoesters. Chemical Communications, 2001, , 533-534.	4.1	29

#	Article	IF	CITATIONS
73	Palladium on Charcoal plus Enantiopure Amino Alcohols as Catalytic Systems for the Enantioselective 1,4-Reduction of α-Substituted α,β-Unsaturated Ketones. European Journal of Organic Chemistry, 2002, 2002, 2151.	2.4	29
74	Recycling in telomerization of butadiene with <scp>D</scp> â€xylose: Pd(TPPTS) _{<i>n</i>} â€KF/Al ₂ O ₃ as an active catalyst. Applied Organometallic Chemistry, 2007, 21, 945-946.	3.5	29
75	Synthesis and characterization of monomeric and dimeric palladium(II)–ammonium complexes: their use for the catalytic oxidation of alcohols. Polyhedron, 1999, 18, 3511-3516.	2.2	28
76	15-Membered macrocyclic triolefin: role in recovering active palladium catalyst for the telomerization of butadiene with methanol. Tetrahedron Letters, 2001, 42, 7055-7057.	1.4	28
77	PdO- and PdII-catalyzed oxaheterocyclization of substrates having both an allylic leaving group and a hydroxylated tether. Journal of Molecular Catalysis A, 2010, 319, 1-29.	4.8	28
78	Aerobic Dehydrogenative Heck Reactions of Heterocycles with Styrenes: A Negative Effect of Metallic Coâ€Oxidants. Advanced Synthesis and Catalysis, 2013, 355, 59-67.	4.3	28
79	Pd-catalyzed reactions of cyclopropanols, cyclobutanols and cyclobutenols. Tetrahedron, 2020, 76, 130879.	1.9	28
80	Critical Role of the Coordination Environment of Palladium Dichloride on the Course of Its Reaction with Secondary Benzylic Alcohols:Â Selective Oxidation or Etherification Catalysts. Organometallics, 2000, 19, 1434-1437.	2.3	27
81	Water-soluble and reusable copper catalyst for the allylic benzoyloxylation of olefins. Tetrahedron Letters, 2002, 43, 431-433.	1.4	27
82	Palladium-catalyzed isomerization of (homo-)allylic alcohols in molten tetrabutylammonium bromide, a recyclable system. Journal of Molecular Catalysis A, 2004, 214, 65-69.	4.8	27
83	Recycling in telomerization of butadiene with methanol and phenol: Pd–KF/Al2O3as an active heterogeneous catalyst system. Green Chemistry, 2003, 5, 686-689.	9.0	26
84	Palladium and rhodium-catalyzed intramolecular [2+2+2] cycloisomerizations in molten tetrabutylammonium bromide. Tetrahedron Letters, 2007, 48, 6425-6428.	1.4	26
85	On the stability of the copper- (S)-proline catalyst in the enantioselective allylic acyloxylation of alkenes. Journal of Organometallic Chemistry, 1995, 494, 165-168.	1.8	25
86	Homogeneous chromium(VI)-catalyzed oxidations of allylic alcohols by alkyl hydroperoxides: Influence of the nature of the alkyl group on the product distribution. Tetrahedron Letters, 1999, 40, 2303-2306.	1.4	25
87	15-Membered Triolefinic Macrocycles â`' Catalytic Role of (E,E,E)-1,6,11-Tris(arenesulfonyl)-1,6,11-triazacyclopentadeca-3,8,13-triene Complexes of Palladium(0) in the Presence of Phosphanes. European Journal of Organic Chemistry, 2003, 2003, 274-283.	2.4	25
88	Amino acid/copper-catalyzed enantioselective allylic benzoyloxylation of olefins in water promoted by diethylene glycol. Tetrahedron: Asymmetry, 2003, 14, 1911-1915.	1.8	25
89	Reactivity versus Stability of Oxiranes under Palladium atalyzed Reductive Conditions. European Journal of Organic Chemistry, 2009, 2009, 961-985.	2.4	25
90	Palladium-catalyzed oxidative cyclization of 1,4- and 1,5-diols in 1,2-dichloroethane. Journal of Molecular Catalysis A, 1998, 129, 135-139.	4.8	24

#	Article	IF	CITATIONS
91	Chromium Catalyzed Oxidation of (Homo-)Allylic and (Homo-)Propargylic Alcohols with Sodium Periodate to Ketones or Carboxylic Acids. Synlett, 2002, 2002, 0243-0246.	1.8	24
92	Palladium(II)-Catalyzed Isomerization of (Z)-1,4-Diacetoxy-2-Butene: Solvent Effects. European Journal of Organic Chemistry, 2007, 2007, 3901-3904.	2.4	24
93	The effect of oxalic acid and glyoxal on the VO(acac)2-catalyzed cyclohexane oxidation with H2O2. Applied Catalysis A: General, 2010, 390, 190-194.	4.3	24
94	Palladium-catalysed telomerization of butadiene with aldoses: A convenient route to non-ionic surfactants based on controlled reactions. Journal of Molecular Catalysis A, 2005, 238, 199-206.	4.8	23
95	Pdâ€Mediated Reactions of Epoxides. European Journal of Organic Chemistry, 2011, 2011, 4717-4741.	2.4	23
96	Wells–Dawson tungsten heteropolyacid-catalyzed reactions of benzylic alcohols, influence of the structure of the substrate. Journal of Molecular Catalysis A, 2006, 260, 187-189.	4.8	22
97	Heck-type reactions of allylic alcohols. Journal of Molecular Catalysis A, 2008, 283, 140-145.	4.8	22
98	Preparation of 1,5-dienes by photolysis of η3-allylpalladium complexes. Journal of the Chemical Society Chemical Communications, 1980, , 257-258.	2.0	21
99	Enantioselektive Protonierung eines einfachen Enols: Aminoalkoholâ€katalysierte Ketonbildung aus dem photochemisch erzeugten 2â€Methylindenâ€3â€ol. Angewandte Chemie, 1991, 103, 460-462.	2.0	21
100	A Convenient One-Step Catalytic Method for Obtaining Optically Active 2-Cyclopentenyl Benzoate from Cyclopentene. Synthetic Communications, 1995, 25, 1789-1794.	2.1	21
101	Palladium(0)-Catalyzed Isomerization of (Z)-1,4-Diacetoxy-2-butene â^ Dependence of η1- or η3-Allylpalladium as a Key Intermediate on the Solvent Polarity. European Journal of Organic Chemistry, 2001, 2001, 3301.	2.4	21
102	Palladium-Catalyzed Telomerization of Butadiene with Polyols: From Mono to Polysaccharides. Topics in Current Chemistry, 2010, 295, 93-119.	4.0	21
103	Preparation of conjugated carbonyl compounds by photolysis of η3-allylpalladium complexes. Journal of the Chemical Society Chemical Communications, 1981, .	2.0	20
104	Highly Efficient Chromium-Catalyzed Oxidation of Secondary Benzylic Alcohols by Aqueous 70%tert-Butyl Hydroperoxide. Synthesis, 1993, 1993, 785-787.	2.3	20
105	Substitution of allylic acetates with sodium para-toluenesulfinate in aqueous media using allylpalladium chloride dimer and a water-soluble ligand as the catalytic system; electrospray ionisation mass spectrometry analysis. New Journal of Chemistry, 2007, 31, 121-126.	2.8	20
106	Pd-Catalyzed Intermolecular Dehydrogenative Heck Reactions of Five-Membered Heteroarenes. Catalysts, 2020, 10, 571.	3.5	20
107	Relationships between the efficiency of cyclohexane oxidation and the electrochemical parameters of the reaction solution. Journal of Molecular Catalysis A, 2011, 347, 15-21.	4.8	19
108	ESI-MS mechanistic studies of Wacker oxidation of alkenes: dinuclear species as catalytic active intermediates. RSC Advances, 2012, 2, 3094.	3.6	19

#	Article	IF	CITATIONS
109	V(IV)-catalyzed cyclohexane oxygenation promoted by oxalic acid: Mechanistic study. Molecular Catalysis, 2017, 434, 194-205.	2.0	18
110	Palladium-catalyzed oxidation of benzylated aldose hemiacetals to lactones. Carbohydrate Research, 2004, 339, 1377-1380.	2.3	17
111	Chromium-catalyzed homolytic scission of organic peroxides with t -butyl hydroperoxide and its relation to benzylic oxidation. Journal of Molecular Catalysis, 1994, 92, 141-147.	1.2	16
112	Amino alcohol-mediated enantioselective syntheses of $\hat{I}\pm$ -substituted indanones and tetralones, ammonium enolates as key intermediates. Tetrahedron: Asymmetry, 2014, 25, 697-704.	1.8	16
113	Dehydrogenative (Hetero)arene Alkoxylations Triggered by Pd ^{II} â€Catalyzed C(sp ²)–H Activation and Coordinating Substituent: Pd ^{II,III} or Pd ^{IV} Complex as Key Intermediate?. European Journal of Organic Chemistry, 2017, 2017, 3528-3548.	2.4	16
114	Palladium-catalyzed allylic oxidation of 1-(p-toluenesulfonyl)-2-propene and 1-(trimethylsilyl)-1-(p-toluenesulfonyl)-2-propene. Journal of Organometallic Chemistry, 1987, 331, 113-119.	1.8	15
115	DMF promoted xylosylation of terpenols. Tetrahedron, 2005, 61, 8405-8409.	1.9	15
116	Highly efficient oxygen transfer from tert-butyl hydroperoxide to benzylic carbons catalyzed by chromium(VI) oxide under high substrate/ hydroperoxide ratios. Journal of Molecular Catalysis, 1994, 92, 277-283.	1.2	14
117	Chromium(vi) oxide–tert-butyl hydroperoxide interactions: evidence for a tert-butylperoxychromium complex and its role in the catalytic oxidation of alcohols. Perkin Transactions II RSC, 2001, , 2318-2323.	1.1	14
118	DBU: A Reaction Product Component. ChemistrySelect, 2020, 5, 11608-11620.	1.5	14
119	Oxygenation under UV light of allylsilanes catalyzed by palladium(II) and of (.eta.3-allyl)palladium complexes: a mechanistic approach. Organometallics, 1992, 11, 3478-3481.	2.3	13
120	Chlorides and Acetylacetonates of Transition Metals as Catalysts for the Oxidation of 1â€indanol by Sodium Percarbonate. Chemische Berichte, 1997, 130, 1655-1658.	0.2	12
121	2-Alkylidene-1-Tetralones from Aldol Condensations. Synthetic Communications, 1998, 28, 4339-4344.	2.1	12
122	Chromium(VI)-Catalyzed Oxidations by Hydrogen Peroxide: Influence of the Presence of Water and Base. European Journal of Organic Chemistry, 1998, 1998, 2599-2602.	2.4	11
123	Palladium-Catalyzed Oxidations:  Inhibition of a Pdâ^'H Elimination by Coordination of a Remote Carbonâ^'Carbon Double Bond. Organometallics, 2001, 20, 1683-1686.	2.3	11
124	On the decarboxylation of 2-methyl-1-tetralone-2-carboxylic acid – oxidation of the enol intermediate by triplet oxygen. New Journal of Chemistry, 2013, 37, 2245.	2.8	11
125	Palladium- and light-enhanced ring-opening of oxiranes by copper chloride. Journal of Organometallic Chemistry, 1992, 433, 323-336.	1.8	10
126	trans-Bis-[(â^')ephedrinate]-palladiumII complex: synthesis, molecular modeling and use as catalyst. Journal of Organometallic Chemistry, 2003, 687, 377-383.	1.8	10

#	Article	IF	CITATIONS
127	Flash-photolytic generation of dienols and dienolates from α,β-unsaturated esters and kinetics of their amine-catalyzed ketonization in nonaqueous media. Photochemical and Photobiological Sciences, 2006, 5, 426.	2.9	10
128	Progress in the synthesis of aldehydes from Pd-catalyzed Wacker-type reactions of terminal olefins. Tetrahedron, 2021, 87, 132024.	1.9	10
129	Synthesis of C8 alkyl glycosides via palladium-catalyzed telomerization of butadiene with O-benzylated aldoses. Carbohydrate Research, 2006, 341, 153-159.	2.3	9
130	Catalytic condensation process for the preparation of organic peroxides from tert-butyl hydroperoxide and benzylic alcohols. Applied Catalysis A: General, 2006, 315, 150-152.	4.3	9
131	Chromium-Assisted Oxidations:1A Simple and Efficient Oxidation of Oxazolopyridylcarbinols by Aqueoustert-Butyl Hydroperoxide. Synthesis, 1994, 1994, 359-360.	2.3	8
132	Heteropolyacid-catalyzed dimerization of α-methylstyrene; on the efficiency and selectivity dependence. Catalysis Communications, 2011, 14, 89-91.	3.3	8
133	On the PdCl2-catalyzed synthesis of allylic azides and allylic sulfonamides from homoallylic alcohols. Tetrahedron Letters, 2011, 52, 5217-5219.	1.4	8
134	The Reims Journey Towards Discovery and Understanding of Pd-Catalyzed Oxidations. Catalysts, 2020, 10, 111.	3.5	8
135	Reactivity ofÂ(–)-cytisine andÂderivatives towards palladium salts. X-ray characterization ofÂaÂnew palladium complex ofÂ(–)-cytisine. Comptes Rendus Chimie, 2006, 9, 1301-1308.	0.5	7
136	Reactivity of 1-Phenoxy-2,7-octadiene under Metathesis Conditions. European Journal of Organic Chemistry, 2006, 2006, 4565-4567.	2.4	7
137	Wells–Dawson tungsten heteropolyacid-catalyzed highly selective dimerization of α-methylstyrene to 1,1,3-trimethyl-3-phenylindan. Catalysis Communications, 2007, 8, 1153-1155.	3.3	7
138	Pd-catalyzed oxidation of alkynes. Journal of Molecular Catalysis A, 2011, , .	4.8	6
139	Chromium-catalyzed oxidation of benzylcyclopropane with tert-butyl hydroperoxide. Catalysis Communications, 2006, 7, 563-565.	3.3	5
140	Palladium0-catalyzed isomerization of (Z)-1-functionalized-4-acetoxy-2-butenes: Solvent and substituent effects. Journal of Organometallic Chemistry, 2010, 695, 62-66.	1.8	5
141	Base-free palladium-mediated cycloalkenylations of olefinic enolic systems. Tetrahedron, 2015, 71, 9035-9059.	1.9	5
142	Palladium/Unichiral Ligandâ€Catalyzed Decarboxylative Asymmetric Protonation of Racemic βâ€Oxoallyl Esters. Advanced Synthesis and Catalysis, 2019, 361, 1464-1478.	4.3	5
143	Unexpected regioselective formation of internal η3-allylpalladium chloride complexes from terminal alkenes and palladium chloride in 1,2-dichloroethane. Journal of Organometallic Chemistry, 1999, 585, 256-258.	1.8	4
144	Chromium(VI) oxide-catalysed oxidations by tert -butyl hydroperoxide using benzotrifluoride as solvent. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 2000, 3, 747-750.	0.1	4

#	Article	IF	CITATIONS
145	Simultaneous Generation of Anionic and Neutral Palladium(II) Complexes fromî·3-Allylpalladium Chloride Dimer and Fluorinatedβ-enaminones. European Journal of Organic Chemistry, 2003, 2003, 4717-4720.	2.4	4
146	Ru-catalyzed metathesis of octadienylether xyloside. Catalysis Communications, 2008, 9, 1414-1417.	3.3	4
147	Oxalic acid-improved mild cyclohexane oxidation catalyzed by VO(acac)2: non-radical versus radical mechanism. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 757-774.	1.7	4
148	A Journey from June 2018 to October 2021 with N,N-Dimethylformamide and N,N-Dimethylacetamide as Reactants. Molecules, 2021, 26, 6374.	3.8	4
149	Allylic C(<i>sp</i> ³)â^C(<i>sp</i> ³) Bond Formation Through Pdâ€Catalyzed C(<i>sp</i> ³)â^H Activation of Alkenes and 1,4â€Dienes. Advanced Synthesis and Catalysis, 2022, 364, 2268-2288.	4.3	4
150	Intermolecular phosphine-free Heck reactions: Amino alcohols as effective ligands. Catalysis Communications, 2011, 12, 1015-1017.	3.3	3
151	Cyclohexane oxidation: relationships of the process efficiency with electrical conductance, electronic and cyclic voltammetry spectra of the reaction mixture. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 123-137.	1.7	3
152	Chiral 2-(2-Diphenylphosphinophenyl)-oxazolines: Synthesis and Use in Pd-Catalyzed Asymmetric Allylic Alkylation. Phosphorus, Sulfur and Silicon and the Related Elements, 2006, 181, 2635-2639.	1.6	2
153	Pd-catalyzed Intermolecular Dehydrogenative Heck Reactions of Six-membered Heteroarenes. Current Organic Chemistry, 2021, 25, 2046-2067.	1.6	2
154	Palladium-Catalyzed Oxidation of Primary and Secondary Alcohols. ChemInform, 2003, 34, no.	0.0	0
155	Water-Mediated Transition-Metal-Free Tsuji—Trost-Type Reaction ChemInform, 2004, 35, no.	0.0	0
156	Palladium-Catalyzed Reactions of Alcohols. Part 3. Formation of Ether Linkages. ChemInform, 2005, 36, no.	0.0	0
157	The Heck-Type Arylation of Allylic Alcohols with Arenediazonium Salts ChemInform, 2005, 36, no.	0.0	0
158	Hydrosilylation conditions applied on alkenyl benzylated xyloses: selective reduction and isomerization. Applied Organometallic Chemistry, 2009, 23, 161-164.	3.5	0
159	Palladium on Charcoal Plus Enantiopure Amino Alcohols as Catalytic Systems for the Enantioselective 1,4â€Reduction of αâ€Substituted α,βâ€Unsaturated Ketones ChemInform, 2002, 33, 29-29. 	0.0	0
160	Versatile and Affordable Approach for Tracking the Oxidative Stress Caused by the Free Radicals: the Chemical Perception. ChemistrySelect, 2020, 5, 13814-13818.	1.5	0