List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3005414/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microfluidic Arrays of Breast Tumor Spheroids for Drug Screening and Personalized Cancer Therapies. Advanced Healthcare Materials, 2022, 11, e2101085.	7.6	48
2	Rapid assembly of PMMA microfluidic devices with PETE membranes for studying the endothelium. Sensors and Actuators B: Chemical, 2022, 356, 131342.	7.8	10
3	Advances in organ-on-a-chip systems for modelling joint tissue and osteoarthritic diseases. Osteoarthritis and Cartilage, 2022, 30, 1050-1061.	1.3	16
4	Trends in Droplet Microfluidics: From Droplet Generation to Biomedical Applications. Langmuir, 2022, 38, 6233-6248.	3.5	30
5	Actuation of Threeâ€Dimensionalâ€Printed Nanocolloidal Hydrogel with Structural Anisotropy. Advanced Functional Materials, 2021, 31, 2010743.	14.9	59
6	Microdroplet-based one-step RT-PCR for ultrahigh throughput single-cell multiplex gene expression analysis and rare cell detection. Scientific Reports, 2021, 11, 6777.	3.3	15
7	Eâ€FLOAT: Extractable Floating Liquid Gelâ€Based Organâ€onâ€aâ€Chip for Airway Tissue Modeling under Airflow. Advanced Materials Technologies, 2021, 6, 2100828.	5.8	9
8	Microfluidic arrays of dermal spheroids: a screening platform for active ingredients of skincare products. Lab on A Chip, 2021, 21, 3952-3962.	6.0	15
9	TANDEM: biomicrofluidic systems with transverse and normal diffusional environments for multidirectional signaling. Lab on A Chip, 2021, 21, 4081-4094.	6.0	2
10	Angiogenic Sprouting Dynamics Mediated by Endothelialâ€Fibroblast Interactions in Microfluidic Systems. Advanced Biology, 2021, 5, e2101080.	2.5	8
11	Computational Modelling and Big Data Analysis of Flow and Drug Transport in Microfluidic Systems: A Spheroid-on-a-Chip Study. Frontiers in Bioengineering and Biotechnology, 2021, 9, 781566.	4.1	8
12	Eâ€FLOAT: Extractable Floating Liquid Gelâ€Based Organâ€onâ€aâ€Chip for Airway Tissue Modeling under Airflow (Adv. Mater. Technol. 12/2021). Advanced Materials Technologies, 2021, 6, .	5.8	0
13	Integrated electrochemical measurement of endothelial permeability in a 3D hydrogel-based microfluidic vascular model. Biosensors and Bioelectronics, 2020, 147, 111757.	10.1	44
14	Human cardiac fibrosis-on-a-chip model recapitulates disease hallmarks and can serve as a platform for drug testing. Biomaterials, 2020, 233, 119741.	11.4	111
15	NanoPADs and nanoFACEs: an optically transparent nanopaper-based device for biomedical applications. Lab on A Chip, 2020, 20, 3322-3333.	6.0	21
16	Microfluidic platform for studying osteocyte mechanoregulation of breast cancer bone metastasis. Integrative Biology (United Kingdom), 2019, 11, 119-129.	1.3	61
17	Biomicrofluidic Systems for Hematologic Cancer Research and Clinical Applications. SLAS Technology, 2019, 24, 457-476.	1.9	8
18	A microfluidic mammary gland coculture model using parallel 3D lumens for studying epithelial-endothelial migration in breast cancer. Biomicrofluidics, 2019, 13, 064122.	2.4	14

#	Article	IF	CITATIONS
19	Modelling of endothelial cell migration and angiogenesis in microfluidic cell culture systems. Biomechanics and Modeling in Mechanobiology, 2019, 18, 717-731.	2.8	33
20	Deep Learning with Microfluidics for Biotechnology. Trends in Biotechnology, 2019, 37, 310-324.	9.3	160
21	Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions. Lab on A Chip, 2018, 18, 1298-1309.	6.0	148
22	Outstanding Reviewers for <i>Lab on a Chip</i> in 2017. Lab on A Chip, 2018, 18, 1398-1398.	6.0	0
23	Integrating Population Heterogeneity Indices with Microfluidic Cell-Based Assays. SLAS Discovery, 2018, 23, 459-473.	2.7	6
24	Multiple Myeloma Cell Drug Responses Differ in Thermoplastic vs PDMS Microfluidic Devices. Analytical Chemistry, 2017, 89, 11391-11398.	6.5	37
25	Solvent Bonding for Fabrication of PMMA and COP Microfluidic Devices. Journal of Visualized Experiments, 2017, , .	0.3	15
26	Recycled polymethylmethacrylate (PMMA) microfluidic devices. Sensors and Actuators B: Chemical, 2017, 253, 738-744.	7.8	32
27	Computational analysis of integrated biosensing and shear flow in a microfluidic vascular model. AIP Advances, 2017, 7, 115116.	1.3	8
28	Single cell functional analysis of multiple myeloma cell populations correlates with diffusion profiles in static microfluidic coculture systems. Biomicrofluidics, 2016, 10, 044105.	2.4	8
29	Microfluidics for Cell Culture. , 2016, , 323-347.		1
30	Combined hot embossing and milling for medium volume production of thermoplastic microfluidic devices. Sensors and Actuators B: Chemical, 2016, 234, 209-221.	7.8	32
31	MicroC ³ : an ex vivo microfluidic cis-coculture assay to test chemosensitivity and resistance of patient multiple myeloma cells. Integrative Biology (United Kingdom), 2015, 7, 643-654.	1.3	42
32	Liquid phase solvent bonding of plastic microfluidic devices assisted by retention grooves. Lab on A Chip, 2015, 15, 3785-3792.	6.0	45
33	Microfluidic Multiculture Assay to Analyze Biomolecular Signaling in Angiogenesis. Analytical Chemistry, 2015, 87, 3239-3246.	6.5	50
34	Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab on A Chip, 2015, 15, 2364-2378.	6.0	394
35	IPO3-mediated Nonclassical Nuclear Import of NF-κB Essential Modulator (NEMO) Drives DNA Damage-dependent NF-κB Activation. Journal of Biological Chemistry, 2015, 290, 17967-17984.	3.4	26
36	Patients are a virtue: advances in microengineered systems for clinical applications. Integrative Biology (United Kingdom), 2015, 7, 962-966.	1.3	2

#	Article	IF	CITATIONS
37	Fluorescence-Based Assessment of Plasma-Induced Hydrophilicity in Microfluidic Devices via Nile Red Adsorption and Depletion. Analytical Chemistry, 2014, 86, 7258-7263.	6.5	6
38	High-content adhesion assay to address limited cell samples. Integrative Biology (United Kingdom), 2013, 5, 720.	1.3	13
39	Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment. Integrative Biology (United Kingdom), 2013, 5, 1096.	1.3	125
40	Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials, 2013, 34, 1471-1477.	11.4	224
41	Advances in Microfluidic Cell Culture Systems for Studying Angiogenesis. Journal of the Association for Laboratory Automation, 2013, 18, 427-436.	2.8	35
42	Assessment of Enhanced Autofluorescence and Impact on Cell Microscopy for Microfabricated Thermoplastic Devices. Analytical Chemistry, 2013, 85, 44-49.	6.5	41
43	A Microscale Neuron and Schwann Cell Coculture Model for Increasing Detection Sensitivity of Botulinum Neurotoxin Type A. Toxicological Sciences, 2013, 134, 64-72.	3.1	21
44	Microscale functional cytomics for studying hematologic cancers. Blood, 2012, 119, e76-e85.	1.4	41
45	Induced hydrophobic recovery of oxygen plasma-treated surfaces. Lab on A Chip, 2012, 12, 2317.	6.0	20
46	Microfluidic kit-on-a-lid: a versatile platform for neutrophil chemotaxis assays. Blood, 2012, 120, e45-e53.	1.4	83
47	Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab on A Chip, 2012, 12, 1224.	6.0	769
48	Rapid Prototyping of Arrayed Microfluidic Systems in Polystyrene for Cell-Based Assays. Analytical Chemistry, 2011, 83, 1408-1417.	6.5	148
49	Microfluidic Cell Culture and Its Application in High-Throughput Drug Screening: Cardiotoxicity Assay for hERG Channels. Journal of Biomolecular Screening, 2011, 16, 101-111.	2.6	63
50	Technique for Real-Time Measurements of Endothelial Permeability in a Microfluidic Membrane Chip Using Laser-Induced Fluorescence Detection. Analytical Chemistry, 2010, 82, 808-816.	6.5	86
51	Methylglyoxal-modified collagen promotes myofibroblast differentiation. Matrix Biology, 2010, 29, 537-548.	3.6	62
52	Fundamentals of microfluidic cell culture in controlled microenvironments. Chemical Society Reviews, 2010, 39, 1036.	38.1	496
53	Macro- and microscale fluid flow systems for endothelial cell biology. Lab on A Chip, 2010, 10, 143-160.	6.0	184
54	Development of a Continuous High-Efficiency Laboratory Fibre Fractionator. Canadian Journal of Chemical Engineering, 2008, 82, 433-441.	1.7	1

#	Article	IF	CITATIONS
55	Substrate architecture and fluid-induced shear stress during chondrocyte seeding: Role of α5β1 integrin. Biomaterials, 2008, 29, 2477-2489.	11.4	12
56	Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators. Soft Matter, 2008, 4, 258-262.	2.7	93
57	Soft lithography: masters on demand. Lab on A Chip, 2008, 8, 1379.	6.0	72
58	Techniques for isolating and purifying porcine aortic valve endothelial cells. Journal of Heart Valve Disease, 2008, 17, 674-81.	0.5	14
59	Methylglyoxal Inhibits the Binding Step of Collagen Phagocytosis. Journal of Biological Chemistry, 2007, 282, 8510-8520.	3.4	46
60	Matrix-dependent adhesion of vascular and valvular endothelial cells in microfluidic channels. Lab on A Chip, 2007, 7, 1759.	6.0	139
61	Flow of microgel capsules through topographically patterned microchannels. Lab on A Chip, 2007, 7, 863.	6.0	31
62	The sedimentation of papermaking fibers. AICHE Journal, 2006, 52, 2697-2706.	3.6	8
63	Electrokinetic Focusing and Dispensing of Particles and Cells on Microfluidic Chips. , 2005, , 213.		0
64	Dielectrophoretic Force on a Sphere near a Planar Boundary. Langmuir, 2005, 21, 12037-12046.	3.5	45