Rajendiran Rajesh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3004642/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rabies virus glycoprotein- and transferrin-functionalized liposomes to elevate epigallocatechin gallate and FK506 activity and mediate MAPK against neuronal apoptosis in Parkinson's disease. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132, 104142.	2.7	2
2	Functionalized drug-gene delivery materials to transport inhibitor of apoptosis protein antagonists for tumor malignancy management. Journal of the Taiwan Institute of Chemical Engineers, 2022, 133, 104283.	2.7	2
3	Enhanced activity of AZD5582 and SM-164 in rabies virus glycoprotein-lactoferrin-liposomes to downregulate inhibitors of apoptosis proteins in glioblastoma. Materials Science and Engineering C, 2022, 133, 112615.	3.8	10
4	Regeneration of insulin-producing cells from iPS cells using functionalized scaffolds and solid lipid nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 2022, 135, 104387.	2.7	2
5	Suppressed XIAP and cIAP expressions in human brain cancer stem cells using BV6- and GDC0152-encapsulated nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 2022, 135, 104394.	2.7	5
6	Use of leptin-conjugated phosphatidic acid liposomes with resveratrol and epigallocatechin gallate to protect dopaminergic neurons against apoptosis for Parkinson's disease therapy. Acta Biomaterialia, 2021, 119, 360-374.	4.1	37
7	Enhanced integrin affinity and neural differentiation of induced pluripotent stem cells using Ln5-P4-grafted amphiphilic solid lipid nanoparticles. Materials Science and Engineering C, 2021, 118, 111339.	3.8	7
8	Glutathione Liposomes Carrying Ceftriaxone, FK506, and Nilotinib to Control Overexpressed Dopamine Markers and Apoptotic Factors in Neurons. ACS Biomaterials Science and Engineering, 2021, 7, 3242-3255.	2.6	6
9	Glutathione- and apolipoprotein E-grafted liposomes to regulate mitogen-activated protein kinases and rescue neurons in Alzheimer's disease. Materials Science and Engineering C, 2021, 127, 112233.	3.8	13
10	Dual-sized inverted colloidal crystal scaffolds grafted with GDF-8 and Wnt3a for enhancing differentiation of iPS cells toward islet β-cells. Journal of the Taiwan Institute of Chemical Engineers, 2021, 126, 371-382.	2.7	4
11	Astragaloside IV- and nesfatin-1-encapsulated phosphatidylserine liposomes conjugated with wheat germ agglutinin and leptin to activate anti-apoptotic pathway and block phosphorylated tau protein expression for Parkinson's disease treatment. Materials Science and Engineering C, 2021, 129, 112361.	3.8	12
12	Particulate systems for improving therapeutic efficacy of pharmaceuticals against central nervous system-related diseases. Journal of the Taiwan Institute of Chemical Engineers, 2020, 114, 12-23.	2.7	12
13	iPSCs-laden GDF8-grafted aldehyde hyaluronic acid-polyacrylamide inverted colloidal crystal constructs with controlled release of CHIR99021 and retinoic acid to generate insulin-producing cells. Journal of the Taiwan Institute of Chemical Engineers, 2020, 116, 223-237.	2.7	1
14	Biomaterial-based drug delivery systems used to improve chemotherapeutic activity of pharmaceuticals and to target inhibitors of apoptosis proteins. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111, 1-10.	2.7	6
15	Inhibition of glioblastoma and macrophage phagocytosis using sialic acid-grafted tamoxifen-carmustine-polyethyleneimine-poly(lactic-co-glycolic acid) nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111, 302-311.	2.7	4
16	Dual functional liposomes carrying antioxidants against tau hyperphosphorylation and apoptosis of neurons. Journal of Drug Targeting, 2020, 28, 949-960.	2.1	9
17	Multiple-component dual-phase solid lipid nanoparticles with conjugated transferrin for formulating antioxidants and nerve growth factor against neuronal apoptosis. Journal of the Taiwan Institute of Chemical Engineers, 2020, 110, 140-152.	2.7	9
18	Electrophoretic mobility of neuron-like cells regenerated from iPSCs with induction of retinoic acid- and nerve growth factor-loaded solid lipid nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 2019, 103, 167-176.	2.7	1

Rajendiran Rajesh

#	Article	IF	CITATIONS
19	Challenges in the treatment of Alzheimer's disease: recent progress and treatment strategies of pharmaceuticals targeting notable pathological factors. Expert Review of Neurotherapeutics, 2019, 19, 623-652.	1.4	17
20	Self-assembled ternary poly(vinyl alcohol)-alginate-gelatin hydrogel with controlled-release nanoparticles for pancreatic differentiation of iPS cells. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104, 27-39.	2.7	12
21	Optimized liposomes with transactivator of transcription peptide and anti-apoptotic drugs to target hippocampal neurons and prevent tau-hyperphosphorylated neurodegeneration. Acta Biomaterialia, 2019, 87, 207-222.	4.1	38
22	Targeting human brain cancer stem cells by curcumin-loaded nanoparticles grafted with anti-aldehyde dehydrogenase and sialic acid: Colocalization of ALDH and CD44. Materials Science and Engineering C, 2019, 102, 362-372.	3.8	43
23	Protection against Neurodegeneration in the Hippocampus Using Sialic Acid- and 5-HT-Moduline-Conjugated Lipopolymer Nanoparticles. ACS Biomaterials Science and Engineering, 2019, 5, 1311-1320.	2.6	8
24	Targeted delivery of etoposide, carmustine and doxorubicin to human glioblastoma cells using methoxy poly(ethylene glycol)‑poly(ε‑caprolactone) nanoparticles conjugated with wheat germ agglutinin and folic acid. Materials Science and Engineering C, 2019, 96, 114-128.	3.8	36
25	Iron oxide-entrapped solid lipid nanoparticles and poly(lactide-co-glycolide) nanoparticles with surfactant stabilization for antistatic application. Journal of Materials Research and Technology, 2019, 8, 887-895.	2.6	5
26	Use of functionalized liposomes loaded with antioxidants to permeate the blood–brain barrier and inhibit β-amyloid-induced neurodegeneration in the brain. Journal of the Taiwan Institute of Chemical Engineers, 2018, 87, 1-14.	2.7	37
27	Current development of nanocarrier delivery systems for Parkinson's disease pharmacotherapy. Journal of the Taiwan Institute of Chemical Engineers, 2018, 87, 15-25.	2.7	17
28	Regulation of human brain vascular pericytes and human astrocytes in a blood–brain barrier model using human brain microvascular endothelial cells: Expression of TGF-β1, VEGF, MMP-9 and P-gp. Journal of the Taiwan Institute of Chemical Engineers, 2018, 86, 9-17.	2.7	11
29	Pancreatic differentiation of induced pluripotent stem cells in activin A-grafted gelatin-poly(lactide-co-glycolide) nanoparticle scaffolds with induction of LY294002 and retinoic acid. Materials Science and Engineering C, 2017, 77, 384-393.	3.8	22
30	Chitosan/γ-poly(glutamic acid) scaffolds with surface-modified albumin, elastin and poly- l -lysine for cartilage tissue engineering. Materials Science and Engineering C, 2017, 78, 265-277.	3.8	36
31	Guided differentiation and tissue regeneration of induced pluripotent stem cells using biomaterials. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77, 41-53.	2.7	11
32	A critical overview of therapeutic strategy and advancement for Alzheimer's disease treatment. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77, 92-105.	2.7	11
33	Recent advances in the treatment of glioblastoma multiforme by inhibiting angiogenesis and using nanocarrier systems. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77, 30-40.	2.7	3
34	Nerve growth factor-loaded heparinized cationic solid lipid nanoparticles for regulating membrane charge of induced pluripotent stem cells during differentiation. Materials Science and Engineering C, 2017, 77, 680-689.	3.8	29
35	Alginate in Bone Tissue Engineering. , 2017, , 349-368.		2
36	Targeted delivery of rosmarinic acid across the blood–brain barrier for neuronal rescue using polyacrylamide-chitosan-poly(lactide- co -glycolide) nanoparticles with surface cross-reacting material 197 and apolipoprotein E. International Journal of Pharmaceutics, 2017, 528, 228-241.	2.6	39

#	ARTICLE	IF	CITATIONS
37	Development of a new carbon nanotube–alginate–hydroxyapatite tricomponent composite scaffold for application in bone tissue engineering. International Journal of Nanomedicine, 2015, 10 Suppl 1, 7.	3.3	21