
Andriy E Belevych

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3004458/publications.pdf

Version: 2024-02-01

ANDRIX F RELEVICE

#	Article	IF	CITATIONS
1	Mitochondrial calpain inhibition restores defective SR-mitochondrial crosstalk in CPVT rat myocytes. Journal of General Physiology, 2022, 154, .	1.9	Ο
2	Ero1α-Dependent ERp44 Dissociation From RyR2 Contributes to Cardiac Arrhythmia. Circulation Research, 2022, 130, 711-724.	4.5	16
3	The role of calcium homeostasis remodeling in inherited cardiac arrhythmia syndromes. Pflugers Archiv European Journal of Physiology, 2021, 473, 377-387.	2.8	14
4	Pyridostigmine improves cardiac function and rhythmicity through RyR2 stabilization and inhibition of STIM1â€mediated calcium entry in heart failure. Journal of Cellular and Molecular Medicine, 2021, 25, 4637-4648.	3.6	3
5	Sarcoplasmic reticulum-mitochondria communication; implications for cardiac arrhythmia. Journal of Molecular and Cellular Cardiology, 2021, 156, 105-113.	1.9	16
6	Acute Detubulation of Ventricular Myocytes Amplifies the Inhibitory Effect of Cholinergic Agonist on Intracellular Ca2+ Transients. Frontiers in Physiology, 2021, 12, 725798.	2.8	0
7	MCU overexpression evokes disparate dose-dependent effects on mito-ROS and spontaneous Ca ²⁺ release in hypertrophic rat cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H615-H632.	3.2	16
8	Increased RyR2 activity is exacerbated by calcium leak-induced mitochondrial ROS. Basic Research in Cardiology, 2020, 115, 38.	5.9	73
9	Muscarinic-dependent phosphorylation of the cardiac ryanodine receptor by protein kinase G is mediated by Pl3K–AKT–nNOS signaling. Journal of Biological Chemistry, 2020, 295, 11720-11728.	3.4	6
10	Enhancement of Cardiac Store Operated Calcium Entry (SOCE) within Novel Intercalated Disk Microdomains in Arrhythmic Disease. Scientific Reports, 2019, 9, 10179.	3.3	33
11	Gene Transfer of Engineered Calmodulin Alleviates Ventricular Arrhythmias in a Calsequestrinâ€Associated Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia. Journal of the American Heart Association, 2018, 7, .	3.7	32
12	The role of spatial organization of Ca2+ release sites in the generation of arrhythmogenic diastolic Ca2+ release in myocytes from failing hearts. Basic Research in Cardiology, 2017, 112, 44.	5.9	17
13	The role of luminal Ca regulation in Ca signaling refractoriness and cardiac arrhythmogenesis. Journal of General Physiology, 2017, 149, 877-888.	1.9	15
14	Neuronal Na+ Channels Are Integral Components of Pro-Arrhythmic Na+/Ca2+ Signaling Nanodomain That Promotes Cardiac Arrhythmias During β-Adrenergic Stimulation. JACC Basic To Translational Science, 2016, 1, 251-266.	4.1	31
15	Muscarinic Stimulation Facilitates Sarcoplasmic Reticulum Ca Release by Modulating Ryanodine Receptor 2 Phosphorylation Through Protein Kinase G and Ca/Calmodulin-Dependent Protein Kinase II. Hypertension, 2016, 68, 1171-1178.	2.7	21
16	Neuronal Na+ channel blockade suppresses arrhythmogenic diastolic Ca2+ release. Cardiovascular Research, 2015, 106, 143-152.	3.8	38
17	Alternating membrane potential/calcium interplay underlies repetitive focal activity in a genetic model of calciumâ€dependent atrial arrhythmias. Journal of Physiology, 2015, 593, 1443-1458.	2.9	24
18	Ablation of HRC alleviates cardiac arrhythmia and improves abnormal Ca handling in CASQ2 knockout mice prone to CPVT. Cardiovascular Research, 2015, 108, 299-311.	3.8	20

#	Article	IF	CITATIONS
19	Calsequestrin 2 deletion causes sinoatrial node dysfunction and atrial arrhythmias associated with altered sarcoplasmic reticulum calcium cycling and degenerative fibrosis within the mouse atrial pacemaker complex1. European Heart Journal, 2015, 36, 686-697.	2.2	110
20	Evaluation of Changes in Morphology and Function of Human Induced Pluripotent Stem Cell Derived Cardiomyocytes (HiPSC-CMs) Cultured on an Aligned-Nanofiber Cardiac Patch. PLoS ONE, 2015, 10, e0126338.	2.5	96
21	Abstract 18111: Flecainide Exerts its Antiarrhythmic Action in CPVT Through Blockade of Neuronal Na+ channel-mediated Arrhythmogenic Diastolic Ca2+ Release. Circulation, 2015, 132, .	1.6	0
22	Calcium-Activated Potassium Current Modulates Ventricular Repolarization in Chronic Heart Failure. PLoS ONE, 2014, 9, e108824.	2.5	62
23	Store-dependent deactivation: Cooling the chain-reaction of myocardial calcium signaling. Journal of Molecular and Cellular Cardiology, 2013, 58, 77-83.	1.9	17
24	â€~Ryanopathy': causes and manifestations of RyR2 dysfunction in heart failure. Cardiovascular Research, 2013, 98, 240-247.	3.8	57
25	Decreased RyR2 refractoriness determines myocardial synchronization of aberrant Ca ²⁺ release in a genetic model of arrhythmia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10312-10317.	7.1	53
26	Dietary Omega-3 Fatty Acids Promote Arrhythmogenic Remodeling of Cellular Ca2+ Handling in a Postinfarction Model of Sudden Cardiac Death. PLoS ONE, 2013, 8, e78414.	2.5	9
27	Shortened Ca ²⁺ Signaling Refractoriness Underlies Cellular Arrhythmogenesis in a Postinfarction Model of Sudden Cardiac Death. Circulation Research, 2012, 110, 569-577.	4.5	99
28	MicroRNA-1 and -133 Increase Arrhythmogenesis in Heart Failure by Dissociating Phosphatase Activity from RyR2 Complex. PLoS ONE, 2011, 6, e28324.	2.5	134
29	The relationship between arrhythmogenesis and impaired contractility in heart failure: role of altered ryanodine receptor function. Cardiovascular Research, 2011, 90, 493-502.	3.8	109
30	Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death. Cardiovascular Research, 2009, 84, 387-395.	3.8	133
31	Redox Modification of Ryanodine Receptors Contributes to Sarcoplasmic Reticulum Ca ²⁺ Leak in Chronic Heart Failure. Circulation Research, 2008, 103, 1466-1472.	4.5	315
32	Enhanced Ryanodine Receptor-Mediated Calcium Leak Determines Reduced Sarcoplasmic Reticulum Calcium Content in Chronic Canine Heart Failure. Biophysical Journal, 2007, 93, 4083-4092.	0.5	94