
Peter W Baas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3004391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stability properties of neuronal microtubules. Cytoskeleton, 2016, 73, 442-460.	2.0	237
2	Reorganization and Movement of Microtubules in Axonal Growth Cones and Developing Interstitial Branches. Journal of Neuroscience, 1999, 19, 8894-8908.	3.6	234
3	Role of cytoplasmic dynein in the axonal transport of microtubules and neurofilaments. Journal of Cell Biology, 2005, 168, 697-703.	5.2	212
4	Cytoplasmic Dynein and Dynactin Are Required for the Transport of Microtubules into the Axon. Journal of Cell Biology, 1998, 140, 391-401.	5.2	204
5	Tau Protects Microtubules in the Axon from Severing by Katanin. Journal of Neuroscience, 2006, 26, 3120-3129.	3.6	199
6	Microtubules and Neuronal Polarity. Neuron, 1999, 22, 23-31.	8.1	187
7	Hooks and comets: The story of microtubule polarity orientation in the neuron. Developmental Neurobiology, 2011, 71, 403-418.	3.0	183
8	Tau Does Not Stabilize Axonal Microtubules but Rather Enables Them to Have Long Labile Domains. Current Biology, 2018, 28, 2181-2189.e4.	3.9	155
9	Kinesin-5 regulates the growth of the axon by acting as a brake on its microtubule array. Journal of Cell Biology, 2007, 178, 1081-1091.	5.2	148
10	Microtubules cut and run. Trends in Cell Biology, 2005, 15, 518-524.	7.9	142
11	Identification of a Microtubule-associated Motor Protein Essential for Dendritic Differentiation. Journal of Cell Biology, 1997, 138, 833-843.	5.2	123
12	Axonal Transport of Microtubules: the Long and Short of It. Traffic, 2006, 7, 490-498.	2.7	123
13	Hereditary spastic paraplegia SPG4: what is known and not known about the disease. Brain, 2015, 138, 2471-2484.	7.6	122
14	Neuronal microtubules: when the MAP is the roadblock. Trends in Cell Biology, 2005, 15, 183-187.	7.9	117
15	Depletion of a Microtubule-Associated Motor Protein Induces the Loss of Dendritic Identity. Journal of Neuroscience, 2000, 20, 5782-5791.	3.6	110
16	Kinesin-12, a Mitotic Microtubule-Associated Motor Protein, Impacts Axonal Growth, Navigation, and Branching. Journal of Neuroscience, 2010, 30, 14896-14906.	3.6	109
17	Microtubules in health and degenerative disease of the nervous system. Brain Research Bulletin, 2016, 126, 217-225.	3.0	106
18	Beyond taxol: microtubule-based treatment of disease and injury of the nervous system. Brain, 2013, 136, 2937-2951.	7.6	102

PETER W BAAS

#	Article	IF	CITATIONS
19	Kinesin-5 Is Essential for Growth-Cone Turning. Current Biology, 2008, 18, 1972-1977.	3.9	99
20	Kinesin-5, a mitotic microtubule-associated motor protein, modulates neuronal migration. Molecular Biology of the Cell, 2011, 22, 1561-1574.	2.1	93
21	Mitotic Motors Coregulate Microtubule Patterns in Axons and Dendrites. Journal of Neuroscience, 2012, 32, 14033-14049.	3.6	91
22	Slow axonal transport and the genesis of neuronal morphology. Journal of Neurobiology, 2004, 58, 3-17.	3.6	90
23	Expression of the Mitotic Motor Protein Eg5 in Postmitotic Neurons: Implications for Neuronal Development. Journal of Neuroscience, 1998, 18, 7822-7835.	3.6	89
24	Tau: It's Not What You Think. Trends in Cell Biology, 2019, 29, 452-461.	7.9	79
25	Role of Actin Filaments in the Axonal Transport of Microtubules. Journal of Neuroscience, 2004, 24, 11291-11301.	3.6	78
26	Basic Fibroblast Growth Factor Elicits Formation of Interstitial Axonal Branches via Enhanced Severing of Microtubules. Molecular Biology of the Cell, 2010, 21, 334-344.	2.1	78
27	Effects of Dynactin Disruption and Dynein Depletion on Axonal Microtubules. Traffic, 2006, 7, 524-537.	2.7	75
28	Microtubules and Growth Cones: Motors Drive the Turn. Trends in Neurosciences, 2016, 39, 433-440.	8.6	69
29	Cytoplasmic Dynein Transports Axonal Microtubules in a Polarity-Sorting Manner. Cell Reports, 2017, 19, 2210-2219.	6.4	67
30	Effects of kinesin-5 inhibition on dendritic architecture and microtubule organization. Molecular Biology of the Cell, 2015, 26, 66-77.	2.1	58
31	Inhibition of a Mitotic Motor Compromises the Formation of Dendrite-like Processes from Neuroblastoma Cells. Journal of Cell Biology, 1997, 136, 659-668.	5.2	57
32	Resurrecting the Mysteries of Big Tau. Trends in Neurosciences, 2020, 43, 493-504.	8.6	54
33	Inhibition of Kinesinâ€5, a Microtubuleâ€Based Motor Protein, As a Strategy for Enhancing Regeneration of Adult Axons. Traffic, 2011, 12, 269-286.	2.7	51
34	Microtubule Transport in the Axon. International Review of Cytology, 2002, 212, 41-62.	6.2	49
35	Vertebrate Fidgetin Restrains Axonal Growth by Severing Labile Domains of Microtubules. Cell Reports, 2015, 12, 1723-1730.	6.4	49
36	Polarity Sorting of Microtubules in the Axon. Trends in Neurosciences, 2018, 41, 77-88.	8.6	47

PETER W BAAS

#	Article	IF	CITATIONS
37	Microtubule Redistribution in Growth Cones Elicited by Focal Inactivation of Kinesin-5. Journal of Neuroscience, 2012, 32, 5783-5794.	3.6	41
38	Emerging Microtubule Targets in Glioma Therapy. Seminars in Pediatric Neurology, 2015, 22, 49-72.	2.0	36
39	Pharmacologically increasing microtubule acetylation corrects stressâ€exacerbated effects of organophosphates on neurons. Traffic, 2017, 18, 433-441.	2.7	34
40	A novel role for retrograde transport of microtubules in the axon. Cytoskeleton, 2012, 69, 416-425.	2.0	33
41	Chronic neuronal activation increases dynamic microtubules to enhance functional axon regeneration after dorsal root crush injury. Nature Communications, 2020, 11, 6131.	12.8	30
42	Ablation of the 14â€3â€3gamma Protein Results in Neuronal Migration Delay and Morphological Defects in the Developing Cerebral Cortex. Developmental Neurobiology, 2016, 76, 600-614.	3.0	27
43	Mutant spastin proteins promote deficits in axonal transport through an isoform-specific mechanism involving casein kinase 2 activation. Human Molecular Genetics, 2017, 26, 2321-2334.	2.9	27
44	Truncating mutations of <i>SPAST</i> associated with hereditary spastic paraplegia indicate greater accumulation and toxicity of the M1 isoform of spastin. Molecular Biology of the Cell, 2017, 28, 1728-1737.	2.1	27
45	Knockdown of Fidgetin Improves Regeneration of Injured Axons by a Microtubule-Based Mechanism. Journal of Neuroscience, 2019, 39, 2011-2024.	3.6	26
46	The crystal structure and biochemical characterization of Kif15: a bifunctional molecular motor involved in bipolar spindle formation and neuronal development. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 123-133.	2.5	25
47	Sliding of centrosome-unattached microtubules defines key features of neuronal phenotype. Journal of Cell Biology, 2016, 213, 329-341.	5.2	23
48	Nanoparticle Delivery of Fidgetin siRNA as a Microtubule-based Therapy to Augment Nerve Regeneration. Scientific Reports, 2017, 7, 9675.	3.3	21
49	Pharmacologically inhibiting kinesin-5 activity with monastrol promotes axonal regeneration following spinal cord injury. Experimental Neurology, 2015, 263, 172-176.	4.1	19
50	Depletion of kinesin-12, a myosin-IIB interacting protein, promotes migration of cortical astrocytes. Journal of Cell Science, 2016, 129, 2438-47.	2.0	19
51	Mitotic Motor KIFC1 Is an Organizer of Microtubules in the Axon. Journal of Neuroscience, 2019, 39, 3792-3811.	3.6	19
52	<scp>TPX</scp> 2 regulates neuronal morphology through kinesinâ€5 interaction. Cytoskeleton, 2015, 72, 340-348.	2.0	17
53	Microtubule Stability in the Axon: New Answers to an Old Mystery. Neuron, 2013, 78, 3-5.	8.1	16
54	New hypothesis for the etiology of <i>SPASTâ€</i> based hereditary spastic paraplegia. Cytoskeleton, 2019, 76, 289-297.	2.0	16

PETER W BAAS

#	Article	IF	CITATIONS
55	Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9â€mediated <i>kif15</i> mutations accelerate axonal outgrowth during neuronal development and regeneration in zebrafish. Traffic, 2019, 20, 71-81.	2.7	15
56	Inhibition of kinesin-5 improves regeneration of injured axons by a novel microtubule-based mechanism. Neural Regeneration Research, 2015, 10, 845.	3.0	14
57	Histone acetylation inhibitors promote axon growth in adult dorsal root ganglia neurons. Journal of Neuroscience Research, 2015, 93, 1215-1228.	2.9	13
58	Polarity sorting of axonal microtubules: a computational study. Molecular Biology of the Cell, 2017, 28, 3271-3285.	2.1	12
59	A cellular approach to understanding and treating Gulf War Illness. Cellular and Molecular Life Sciences, 2021, 78, 6941-6961.	5.4	12
60	Reprogramming cells from Gulf War veterans into neurons to study Gulf War illness. Neurology, 2017, 88, 1968-1975.	1.1	11
61	Mini-review: Microtubule sliding in neurons. Neuroscience Letters, 2021, 753, 135867.	2.1	11
62	Beyond taxol: microtubule-based strategies for promoting nerve regeneration after injury. Neural Regeneration Research, 2014, 9, 1265.	3.0	9
63	KIFC1 Regulates the Trajectory of Neuronal Migration. Journal of Neuroscience, 2022, 42, 2149-2165.	3.6	8
64	Cell Migration: Katanin Gives Microtubules a Trim. Current Biology, 2011, 21, R302-R304.	3.9	7
65	Therapeutic Strategies for Mutant SPAST-Based Hereditary Spastic Paraplegia. Brain Sciences, 2021, 11, 1081.	2.3	5
66	Modeling gain-of-function and loss-of-function components of <i>SPAST</i> -based hereditary spastic paraplegia using transgenic mice. Human Molecular Genetics, 2022, 31, 1844-1859.	2.9	4
67	Using siRNA to study microtubule-related proteins in cultured neurons. Methods in Cell Biology, 2016, 131, 163-176.	1.1	3
68	Creative destruction of the microtubule array. Cell Cycle, 2012, 11, 2420-2421.	2.6	2
69	International Meeting Molecular Neurodegeneration: News and Views in Molecular Neuroscience in Health and Disease. Delmenhorst, Germany, July 20–22, 2015. Journal of Molecular Neuroscience, 2015, 57, 153-159.	2.3	1
70	The Carbamate, Physostigmine does not Impair Axonal Transport in Rat Cortical Neurons. Neuroscience Insights, 2021, 16, 263310552110202.	1.6	1
71	O2-06-06: INHIBITION OF FIDGETIN, A MICROTUBULE SEVERING PROTEIN, PREVENTS MICROTUBULE LOSS IN AN EXPERIMENTAL MODEL OF ALZHEIMER'S DISEASE. , 2014, 10, P176-P177.		0

#	Article	IF	CITATIONS
73	The Community of Neuronal Cytoskeletal Researchers Finds a Home. Cytoskeleton, 2020, 77, 39-39.	2.0	0