
Christos Liaskos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3004105/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Workload Characterization and Traffic Analysis for Reconfigurable Intelligent Surfaces Within 6G Wireless Systems. IEEE Transactions on Mobile Computing, 2023, 22, 3079-3094.	3.9	1
2	Realizing Ambient Backscatter Communications with Intelligent Surfaces in 6G Wireless Systems. IEEE Wireless Communications, 2022, 29, 178-185.	6.6	5
3	Software-Defined Reconfigurable Intelligent Surfaces: From Theory to End-to-End Implementation. Proceedings of the IEEE, 2022, 110, 1466-1493.	16.4	15
4	End-to-end TCP-compatible Backpressure Routing. , 2022, , .		1
5	Multifunctional Metasurface Architecture for Amplitude, Polarization and Wave-Front Control. Physical Review Applied, 2022, 17, .	1.5	12
6	A Multi-Functional Reconfigurable Metasurface: Electromagnetic Design Accounting for Fabrication Aspects. IEEE Transactions on Antennas and Propagation, 2021, 69, 1440-1454.	3.1	71
7	Switched-Beam Graphene Plasmonic Nanoantenna in the Terahertz Wave Region. Plasmonics, 2021, 16, 1855-1864.	1.8	13
8	Radiation Pattern Prediction for Metasurfaces: A Neural Network-Based Approach. Sensors, 2021, 21, 2765.	2.1	15
9	Next Generation Connected Materials for Intelligent Energy Propagation in Multiphysics Systems. IEEE Communications Magazine, 2021, 59, 100-106.	4.9	4
10	Design, Fabrication, and Characterization of a Proof-of-Concept Multi-functional Microwave Metasurface using Static Loads. , 2021, , .		0
11	On the Use of Programmable Metasurfaces in Vehicular Networks. , 2021, , .		6
12	Extremum Seeking Control for Beam Steering using Hypersurfaces. , 2020, , .		9
13	End-to-End Wireless Path Deployment With Intelligent Surfaces Using Interpretable Neural Networks. IEEE Transactions on Communications, 2020, 68, 6792-6806.	4.9	21
14	Toward Fault-Tolerant Deadlock-Free Routing in HyperSurface-Embedded Controller Networks. IEEE Networking Letters, 2020, 2, 140-144.	1.5	4
15	Advanced Physical-layer Security as an App in Programmable Wireless Environments. , 2020, , .		4
16	Graphene Hypersurface for Manipulation of THz Waves. Materials Science Forum, 2020, 1009, 63-68.	0.3	5
17	Immersive Interconnected Virtual and Augmented Reality: A 5G and IoT Perspective. Journal of Network and Systems Management, 2020, 28, 796-826.	3.3	32
18	Mobility-Aware Beam Steering in Metasurface-Based Programmable Wireless Environments. , 2020, , .		6

Mobility-Aware Beam Steering in Metasurface-Based Programmable Wireless Environments. , 2020, , . 18

#	Article	IF	CITATIONS
19	Scalability Analysis of Programmable Metasurfaces for Beam Steering. IEEE Access, 2020, 8, 105320-105334.	2.6	36
20	Toward Intelligent Metasurfaces: The Progress from Globally Tunable Metasurfaces to Softwareâ€Đefined Metasurfaces with an Embedded Network of Controllers. Advanced Optical Materials, 2020, 8, 2000783.	3.6	145
21	Towards fault adaptive routing in metasurface controller networks. Journal of Systems Architecture, 2020, 106, 101703.	2.5	12
22	Nanoantennas design for THz communication. , 2020, , .		2
23	Manufacturing of high frequency substrates as software programmable metasurfaces on PCBs with integrated controller nodes. , 2020, , .		4
24	On the Network-Layer Modeling and Configuration of Programmable Wireless Environments. IEEE/ACM Transactions on Networking, 2019, 27, 1696-1713.	2.6	41
25	Workload Characterization of Programmable Metasurfaces. , 2019, , .		11
26	Exploration of Intercell Wireless Millimeter-Wave Communication in the Landscape of Intelligent Metasurfaces. IEEE Access, 2019, 7, 122931-122948.	2.6	41
27	An Interpretable Neural Network for Configuring Programmable Wireless Environments. , 2019, , .		41
28	Feedback Based Beam Steering for Intelligent Metasurfaces. , 2019, , .		5
29	3D Channel Modeling and Characterization for Hypersurface Empowered Indoor Environment at 60 GHz Millimeter-Wave Band. , 2019, , .		9
30	Joint Compressed Sensing and Manipulation of Wireless Emissions with Intelligent Surfaces. , 2019, , .		19
31	ABSense. , 2019, , .		14
32	Wideband Perfect Absorption Polarization Insensitive Reconfigurable Graphene Metasurface for THz Wireless Environment. , 2019, , .		12
33	Improving networked music performance systems using applicationâ€network collaboration. Concurrency Computation Practice and Experience, 2019, 31, e4730.	1.4	5
34	A novel communication paradigm for high capacity and security via programmable indoor wireless environments in next generation wireless systems. Ad Hoc Networks, 2019, 87, 1-16.	3.4	80
35	Network Topology Effects on the Detectability of Crossfire Attacks. IEEE Transactions on Information Forensics and Security, 2018, 13, 1682-1695.	4.5	17
36	Realizing Wireless Communication Through Software-Defined HyperSurface Environments. , 2018, , .		70

#	Article	IF	CITATIONS
37	Fault Adaptive Routing in Metasurface Controller Networks. , 2018, , .		13
38	Software-Defined Metasurface Paradigm: Concept, Challenges, Prospects. , 2018, , .		14
39	Using any surface to realize a new paradigm for wireless communications. Communications of the ACM, 2018, 61, 30-33.	3.3	89
40	A New Wireless Communication Paradigm through Software-Controlled Metasurfaces. IEEE Communications Magazine, 2018, 56, 162-169.	4.9	799
41	Programmable Metasurfaces: State of the Art and Prospects. , 2018, , .		49
42	Intercell Wireless Communication in Software-defined Metasurfaces. , 2018, , .		28
43	Packet routing in 3D nanonetworks: A lightweight, linear-path scheme. Nano Communication Networks, 2017, 12, 63-71.	1.6	37
44	Computing and Communications for the Software-Defined Metamaterial Paradigm: A Context Analysis. IEEE Access, 2017, 5, 6225-6235.	2.6	62
45	Backpressure on the Backbone: A Lightweight, Non-Intrusive Traffic Engineering Approach. IEEE Transactions on Network and Service Management, 2017, 14, 176-190.	3.2	5
46	The Socket Store: An app model for the application-network interaction. , 2017, , .		3
47	Application-network collaboration using SDN for ultra-low delay teleorchestras. , 2017, , .		4
48	A novel protocol for network-controlled metasurfaces. , 2017, , .		12
49	Fast-fair handling of flows. International Journal of Communication Networks and Distributed Systems, 2017, 18, 32.	0.3	0
50	On the Interplay of Link-Flooding Attacks and Traffic Engineering. Computer Communication Review, 2016, 46, 5-11.	1.5	33
51	Stateless Linear-path Routing for 3D Nanonetworks. , 2016, , .		8
52	A deployable routing system for nanonetworks. , 2016, , .		15
53	A novel framework for modeling and mitigating distributed link flooding attacks. , 2016, , .		42

54 N3: Addressing and routing in 3D nanonetworks. , 2016, , .

12

#	Article	IF	CITATIONS
55	Lightweight, self-tuning data dissemination for dense nanonetworks. Nano Communication Networks, 2016, 8, 2-15.	1.6	24
56	Service Ratio-Optimal, Content Coherence-Aware Data Push Systems. ACM Transactions on Management Information Systems, 2016, 6, 1-23.	2.1	7
57	Fast and Fair Handling of Multimedia CAPTCHA Flows. International Journal of Interactive Mobile Technologies, 2015, 9, 64.	0.7	1
58	A Promise of Realizable, Ultra-Scalable Communications at Nano-Scale:A Multi-Modal Nano-Machine Architecture. IEEE Transactions on Computers, 2015, 64, 1282-1295.	2.4	28
59	A lightweight, non-intrusive approach for orchestrating autonomously-managed network elements. , 2015, , .		2
60	Design and Development of Software Defined Metamaterials for Nanonetworks. IEEE Circuits and Systems Magazine, 2015, 15, 12-25.	2.6	84
61	CORONA., 2015, , .		43
62	Enhancing the Trustworthiness of Service On-Demand Systems via Smart Vote Filtering. Lecture Notes in Computer Science, 2015, , 88-103.	1.0	0
63	Computer assisted Sound Analysis of Arteriovenous Fistula in Hemodialysis Patients. International Journal of Artificial Organs, 2014, 37, 173-176.	0.7	5
64	Minimal Wireless Broadcast Schedules for Multi-objective Pursuits. IEEE Transactions on Vehicular Technology, 2014, , 1-1.	3.9	1
65	On Data Compatibility and Broadcast Stream Formation. IEEE Transactions on Computers, 2014, 63, 2369-2375.	2.4	1
66	On the Use of FDTD and Ray-Tracing Schemes in the Nanonetwork Environment. IEEE Communications Letters, 2014, 18, 1823-1826.	2.5	13
67	Generalizing the Square Root Rule for Optimal Periodic Scheduling in Push-Based Wireless Environments. IEEE Transactions on Computers, 2013, 62, 1044-1050.	2.4	4
68	Sensor Swarm query filtering: Heightened attack resilience for broadcast on-demand services. , 2013, ,		1
69	PANDA. , 2013, , .		4
70	Optimal Periodic Scheduling Under Multimodel Per-Item Constraints in Wireless Systems. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2012, 42, 1071-1080.	3.3	2
71	Virtual laboratories on wireless communications: A contemporary, extensible approach. , 2012, , .		1
72	Parallel Data Broadcasting for Optimal Client Service Ratio. IEEE Communications Letters, 2012, 16, 1741-1743.	2.5	4

#	Article	IF	CITATIONS
73	Entropy-Based Estimation of Client Preferences in Wireless Push Systems. IEEE Transactions on Communications, 2012, 60, 3899-3908.	4.9	1
74	Balancing Wireless Data Broadcasting and Information Hovering for Efficient Information Dissemination. IEEE Transactions on Broadcasting, 2012, 58, 66-76.	2.5	17
75	Broadcast Scheduling With Multiple Concurrent Costs. IEEE Transactions on Broadcasting, 2012, 58, 178-186.	2.5	9
76	More for Less. Lecture Notes in Computer Science, 2012, , 64-75.	1.0	6
77	Minimizing mean client serving time and broadcast schedule cost in wireless push systems. , 2011, , .		0
78	Towards Realizable, Low-Cost Broadcast Systems for Dynamic Environments. IEEE/ACM Transactions on Networking, 2011, 19, 383-392.	2.6	26
79	Information hovering: A new approach for performance acceleration of wireless push systems. , 2011, ,		1
80	On the Analytical Performance Optimization of Wireless Data Broadcasting. IEEE Transactions on Vehicular Technology, 2010, 59, 884-895.	3.9	25
81	Cost-Aware Wireless Data Broadcasting. IEEE Transactions on Broadcasting, 2010, 56, 66-76.	2.5	25
82	Ultra lightweight adaptation processes for scheduling servers in push-based systems. , 2010, , .		6
83	Combining optimal performance with cost-efficiency in adaptive wireless broadcast-based systems. , 2010, , .		0
84	An analytical approach to the design of wireless broadcast disks systems. , 2009, , .		3
85	A new approach to the design of wireless data broadcasting systems: An analysis-based cost-effective scheme. , 2009, , .		2
86	Clustering-Driven Wireless Data Broadcasting. IEEE Wireless Communications, 2009, 16, 80-87.	6.6	27