Birgit Kopainsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3004095/publications.pdf

Version: 2024-02-01

471509 330143 1,577 49 17 37 citations h-index g-index papers 53 53 53 1763 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Food system resilience: Defining the concept. Global Food Security, 2015, 6, 17-23.	8.1	456
2	A framework to assess the resilience of farming systems. Agricultural Systems, 2019, 176, 102656.	6.1	302
3	Call for transparency of COVID-19 models. Science, 2020, 368, 482-483.	12.6	85
4	Development of Organic Farming in Europe at the Crossroads: Looking for the Way Forward through System Archetypes Lenses. Sustainability, 2017, 9, 821.	3.2	57
5	Closing the loop: promoting synergies with other theory building approaches to improve system dynamics practice. Systems Research and Behavioral Science, 2008, 25, 471-486.	1.6	54
6	A system dynamics approach for examining mechanisms and pathways of food supply vulnerability. Journal of Environmental Studies and Sciences, 2015, 5, 321-336.	2.0	54
7	Can Organic Farming Reduce Vulnerabilities and Enhance the Resilience of the European Food System? A Critical Assessment Using System Dynamics Structural Thinking Tools. Sustainability, 2016, 8, 971.	3.2	40
8	Transforming food systems at local levels: Using participatory system dynamics in an interactive manner to refine small-scale farmers' mental models. Ecological Modelling, 2017, 362, 101-110.	2.5	40
9	Reflections on adapting group model building scripts into online workshops. System Dynamics Review, 2020, 36, 358-372.	1.9	40
10	Food security outcomes in agricultural systems models: Current status and recommended improvements. Agricultural Systems, 2021, 188, 103028.	6.1	36
11	Designing Sustainable Food Security Policies in Subâ€Saharan African Countries: How Social Dynamics Overâ€Ride Utility Evaluations for Good and Bad. Systems Research and Behavioral Science, 2012, 29, 575-589.	1.6	27
12	Conceptual frameworks linking agriculture and food security. Nature Food, 2020, 1, 541-551.	14.0	23
13	Simulatorâ€supported descriptions of complex dynamic problems: experimental results on task performance and system understanding. System Dynamics Review, 2011, 27, 142-172.	1.9	22
14	Do you bend or break? System dynamics in resilience planning for food security. System Dynamics Review, 2019, 35, 287-309.	1.9	21
15	Food Provision and Environmental Goals in the Swiss Agriâ€Food System: System Dynamics and the Socialâ€ecological Systems Framework. Systems Research and Behavioral Science, 2015, 32, 414-432.	1.6	19
16	System Dynamics and Simulation/Gaming. Simulation and Gaming, 2015, 46, 223-229.	1.9	19
17	Supporting stakeholders to anticipate and respond to risks in a Mekong River water-energy-food nexus. Ecology and Society, 2020, 25, .	2.3	19
18	Using system dynamics to support a participatory assessment of resilience. Environment Systems and Decisions, 2020, 40, 342-355.	3.4	19

#	Article	IF	CITATIONS
19	The Bio-Based Economy: Dynamics Governing Transition Pathways in the Swedish Forestry Sector. Sustainability, 2018, 10, 976.	3.2	18
20	Investigating the drivers of innovation diffusion in a low income country context. The case of adoption of improved maize seed in Malawi. Futures, 2016, 81, 161-175.	2.5	17
21	Agricultural intensification can no longer ignore water conservation – A systemic modelling approach to the case of tomato producers in Morocco. Agricultural Water Management, 2021, 256, 107082.	5.6	17
22	Effect of Prior Exploration as an Instructional Strategy for System Dynamics. Simulation and Gaming, 2015, 46, 293-321.	1.9	15
23	Participatory Modeling Updates Expectations forIndividuals and Groups, Catalyzing BehaviorChange and Collective Action inWaterâ€Energyâ€Food NexusGovernance. Earth's Future, 2019, 7, 1337-1352.	6.3	15
24	Application of the Malaria Management Model to the Analysis of Costs and Benefits of DDT versus Non-DDT Malaria Control. PLoS ONE, 2011, 6, e27771.	2.5	14
25	Systems Education at Bergen. Systems, 2014, 2, 159-167.	2.3	13
26	Food security outcomes in agricultural systems models: Case examples and priority information needs. Agricultural Systems, 2021, 188, 103030.	6.1	13
27	A Food Systems Perspective for Food and Nutrition Security beyond the Postâ€2015 Development Agenda. Systems Research and Behavioral Science, 2018, 35, 178-190.	1.6	12
28	Climate change adaptation processes seen through a resilience lens: Norwegian farmers' handling of the dry summer of 2018. Environmental Science and Policy, 2022, 133, 146-154.	4.9	12
29	Automated assessment of learners' understanding in complex dynamic systems. System Dynamics Review, 2012, 28, 131-156.	1.9	11
30	Human-Water Dynamics and their Role for Seasonal Water Scarcity – a Case Study. Water Resources Management, 2021, 35, 3043-3061.	3.9	11
31	Understanding resilience of farming systems: Insights from system dynamics modelling for an arable farming system in the Netherlands. Ecological Modelling, 2022, 464, 109848.	2.5	10
32	Understanding the Transition to a Bio-Based Economy: Exploring Dynamics Linked to the Agricultural Sector in Sweden. Sustainability, 2018, 10, 1504.	3.2	9
33	Effects of Structural Transparency in System Dynamics Simulators on Performance and Understanding. Systems, 2015, 3, 152-176.	2.3	7
34	Closing the mineral construction material cycle $\hat{a}\in$ An endogenous perspective on barriers in transition. Resources, Conservation and Recycling, 2021, 175, 105859.	10.8	6
35	Sustainable and healthy diets: Synergies and tradeâ€offs in Switzerland. Systems Research and Behavioral Science, 2020, 37, 908-927.	1.6	6
36	Natural Resource Management: Contributions of System Dynamics to Research, Policy and Implementation. Systems Research and Behavioral Science, 2017, 34, 378-385.	1.6	4

#	Article	IF	CITATIONS
37	Shortâ€term versus longâ€term decision tradeâ€offs: Evidence from a modelâ€based observational experiment with <scp>African</scp> smallâ€scale farmers. Systems Research and Behavioral Science, 2019, 36, 215-228.	1.6	4
38	Integrated simulation for national development planning. Kybernetes, 2019, 48, 208-223.	2.2	4
39	Using Participatory System Dynamics Modeling to Address Complex Conservation Problems: Tiger Farming as a Case Study. Frontiers in Conservation Science, 2021, 2, .	1.9	4
40	Learning about Dynamic Problems with Computer Simulators: A Case of System Dynamics Simulation Models. , 2008, , .		2
41	System Dynamics as a Framework for Understanding Humanâ€"Environment Dynamics. AESS Interdisciplinary Environmental Studies and Sciences Series, 2017, , 25-36.	0.2	2
42	Participatory System Dynamics Mapping for Collaboration and Socioecological Integration in the Lake Tana Region. AESS Interdisciplinary Environmental Studies and Sciences Series, 2017, , 615-630.	0.2	2
43	Using microworlds for policymaking in the context of resilient farming systems. Journal of Simulation, 0, , 1-25.	1.5	1
44	Dynamics of Enforcement and Infringement of Intellectual Property Rights and Implications for the Incentive Function. SSRN Electronic Journal, 2010, , .	0.4	0
45	Wie weiter mit der dezentralen Besiedlung in der Schweiz? : AbschÃŒzung von Entwicklungsperspektiven auf Gemeindeebene. Geographica Helvetica, 2005, 60, 239-247.	0.8	0
46	Social Dynamics Overriding Utility Evaluations for Good and Bad: Implications for the Design of Sustainable Food Security Policies in Sub-Saharan African Countries. Sustainability and Innovation, 2013, , 223-241.	0.2	0
47	Call for submissions to the 2022 <scp>ISDC</scp> . System Dynamics Review, 2021, 37, 367-369.	1.9	O
48	Integrated Assessment of the Sustainability and Resilience of Farming Systems., 2022,, 279-301.		0
49	SURE-Farm Approach to Assess the Resilience of European Farming Systems. , 2022, , 1-17.		O