Annemieke Smet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3003993/publications.pdf

Version: 2024-02-01

214721 186209 2,884 106 28 47 citations h-index g-index papers 111 111 111 3392 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Diversity of Extended-Spectrum \hat{l}^2 -Lactamases and Class C \hat{l}^2 -Lactamases among Cloacal <i>Escherichia coli</i> Isolates in Belgian Broiler Farms. Antimicrobial Agents and Chemotherapy, 2008, 52, 1238-1243.	1.4	197
2	Broad-spectrum \hat{l}^2 -lactamases among <i>Enterobacteriaceae </i> of animal origin: molecular aspects, mobility and impact on public health. FEMS Microbiology Reviews, 2010, 34, 295-316.	3.9	190
3	Systematic review: gastric microbiota in health and disease. Alimentary Pharmacology and Therapeutics, 2020, 51, 582-602.	1.9	113
4	Complete Nucleotide Sequence of CTX-M-15-Plasmids from Clinical Escherichia coli Isolates: Insertional Events of Transposons and Insertion Sequences. PLoS ONE, 2010, 5, e11202.	1.1	101
5	Antimicrobial use in Belgian broiler production. Preventive Veterinary Medicine, 2012, 105, 320-325.	0.7	94
6	Risk factors for ceftiofur resistance in <i>Escherichia coli</i> from Belgian broilers. Epidemiology and Infection, 2011, 139, 765-771.	1.0	79
7	Characterization of Extended-Spectrum β-Lactamases Produced by <i>Escherichia coli</i> Isolated from Hospitalized and Nonhospitalized Patients: Emergence of CTX-M-15-Producing Strains Causing Urinary Tract Infections. Microbial Drug Resistance, 2010, 16, 129-134.	0.9	78
8	In situ ESBL conjugation from avian to human Escherichia coli during cefotaxime administration. Journal of Applied Microbiology, 2011, 110, 541-549.	1.4	70
9	United European Gastroenterology (UEG) and European Society for Neurogastroenterology and Motility (ESNM) consensus on functional dyspepsia. United European Gastroenterology Journal, 2021, 9, 307-331.	1.6	62
10	OXA-23-producing Acinetobacter species from horses: a public health hazard?. Journal of Antimicrobial Chemotherapy, 2012, 67, 3009-3010.	1.3	58
11	Gastric epithelial cell death caused by Helicobacter suis and Helicobacter pylori γ-glutamyl transpeptidase is mainly glutathione degradation-dependent. Cellular Microbiology, 2011, 13, 1933-1955.	1.1	57
12	Significantly higher frequency of <i><i><i><scp>H</scp>elicobacter suis</i> in patients with idiopathic parkinsonism than in control patients. Alimentary Pharmacology and Therapeutics, 2013, 38, 1347-1353.</i></i>	1.9	54
13	Genome sequence of Helicobacter suis supports its role in gastric pathology. Veterinary Research, 2011, 42, 51.	1.1	52
14	Non-Helicobacter pylori Helicobacter Species in the Human Gastric Mucosa: A Proposal to Introduce the Terms H.Âheilmannii Sensu Lato and Sensu Stricto. Helicobacter, 2011, 16, 339-340.	1.6	52
15	Helicobacter suis Causes Severe Gastric Pathology in Mouse and Mongolian Gerbil Models of Human Gastric Disease. PLoS ONE, 2010, 5, e14083.	1.1	51
16	Helicobacter heilmannii sp. nov., isolated from feline gastric mucosa. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 299-306.	0.8	51
17	Prevalence and Persistence of Antimicrobial Resistance in Broiler Indicator Bacteria. Microbial Drug Resistance, 2010, 16, 67-74.	0.9	42
18	Antimicrobial susceptibility of Salmonella isolates from healthy pigs and chickens (2008–2011). Veterinary Microbiology, 2014, 171, 298-306.	0.8	41

#	Article	IF	Citations
19	Detection, isolation and characterization of Fusobacterium gastrosuis sp. nov. colonizing the stomach of pigs. Systematic and Applied Microbiology, 2017, 40, 42-50.	1.2	40
20	The local immune response of mice after Helicobacter suis infection: strain differences and distinction with Helicobacter pylori. Veterinary Research, 2012, 43, 75.	1.1	39
21	Survival of Helicobacter suis bacteria in retail pig meat. International Journal of Food Microbiology, 2013, 166, 164-167.	2.1	38
22	Divergence between the Highly Virulent Zoonotic Pathogen Helicobacter heilmannii and Its Closest Relative, the Low-Virulence "Helicobacter ailurogastricus―sp. nov. Infection and Immunity, 2016, 84, 293-306.	1.0	37
23	Case Report: <i>Helicobacter suis</i> Infection in a Pig Veterinarian. Helicobacter, 2013, 18, 392-396.	1.6	36
24	Presence and significance of Helicobacter spp. in the gastric mucosa of Portuguese dogs. Gut Pathogens, 2015, 7, 12.	1.6	35
25	Macroevolution of gastric <i>Helicobacter</i> species unveils interspecies admixture and time of divergence. ISME Journal, 2018, 12, 2518-2531.	4.4	35
26	The role of mucins in gastrointestinal barrier function during health and disease. The Lancet Gastroenterology and Hepatology, 2022, 7, 455-471.	3.7	35
27	Comparative analysis of extended-spectrum-Â-lactamase-carrying plasmids from different members of Enterobacteriaceae isolated from poultry, pigs and humans: evidence for a shared Â-lactam resistance gene pool?. Journal of Antimicrobial Chemotherapy, 2009, 63, 1286-1288.	1.3	33
28	Helicobacter suis induces changes in gastric inflammation and acid secretion markers in pigs of different ages. Veterinary Research, 2017, 48, 34.	1.1	32
29	Acinetobacter gandensis sp. nov. isolated from horse and cattle. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 4007-4015.	0.8	31
30	In-Depth Study of Transmembrane Mucins in Association with Intestinal Barrier Dysfunction During the Course of T Cell Transfer and DSS-Induced Colitis. Journal of Crohn's and Colitis, 2020, 14, 974-994.	0.6	31
31	The Role of Microbiota in Gastrointestinal Cancer and Cancer Treatment: Chance or Curse?. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 857-874.	2.3	30
32	<i>Helicobacter suis</i> binding to carbohydrates on human and porcine gastric mucins and glycolipids occurs via two modes. Virulence, 2018, 9, 898-918.	1.8	29
33	Gastric and Enterohepatic Nonâ€ <i>Helicobacter pylori</i> Helicobacters. Helicobacter, 2013, 18, 66-72.	1.6	28
34	The choroid plexus epithelium as a novel player in the stomach-brain axis during Helicobacter infection. Brain, Behavior, and Immunity, 2018, 69, 35-47.	2.0	28
35	Multilocus Sequence Typing of the Porcine and Human Gastric Pathogen Helicobacter suis. Journal of Clinical Microbiology, 2013, 51, 920-926.	1.8	27
36	IncK plasmid-mediated tetracycline resistance in Edwardsiella ictaluri isolates from diseased freshwater catfish in Vietnam. Aquaculture, 2009, 295, 157-159.	1.7	26

#	Article	IF	Citations
37	Evidence for a primate origin of zoonotic <i>Helicobacter suis</i> colonizing domesticated pigs. ISME Journal, 2018, 12, 77-86.	4.4	26
38	Effects of Helicobacter suis \hat{I}^3 - Glutamyl Transpeptidase on Lymphocytes: Modulation by Glutamine and Glutathione Supplementation and Outer Membrane Vesicles as a Putative Delivery Route of the Enzyme. PLoS ONE, 2013, 8, e77966.	1.1	26
39	Presence of antimicrobial resistance in coliform bacteria from hatching broiler eggs with emphasis on ESBL/AmpC-producing bacteria. Avian Pathology, 2016, 45, 493-500.	0.8	25
40	Residues of chlortetracycline, doxycycline and sulfadiazine-trimethoprim in intestinal content and feces of pigs due to cross-contamination of feed. BMC Veterinary Research, 2016, 12, 209.	0.7	24
41	Other Helicobacters and gastric microbiota. Helicobacter, 2016, 21, 62-68.	1.6	24
42	Review: Other Helicobacter species. Helicobacter, 2019, 24, e12645.	1.6	23
43	A dynamic mucin mRNA signature associates with COVID-19 disease presentation and severity. JCI Insight, 2021, 6, .	2.3	23
44	The Importance of Sample Size in the Determination of a Flock-Level Antimicrobial Resistance Profile for Escherichia coliin Broilers. Microbial Drug Resistance, 2011, 17, 513-519.	0.9	22
45	In silico proteomic and phylogenetic analysis of the outer membrane protein repertoire of gastric Helicobacter species. Scientific Reports, 2018, 8, 15453.	1.6	22
46	Presence of gastric <i>Helicobacter</i> species in children suffering from gastric disorders in Southern Turkey. Helicobacter, 2018, 23, e12511.	1.6	22
47	Helicobacter suis infection alters glycosylation and decreases the pathogen growth inhibiting effect and binding avidity of gastric mucins. Mucosal Immunology, 2019, 12, 784-794.	2.7	22
48	Review: Other <i>Helicobacter</i> species. Helicobacter, 2020, 25, e12744.	1.6	22
49	Role of \hat{I}^3 -glutamyltranspeptidase in the pathogenesis of Helicobacter suis and Helicobacter pylori infections. Veterinary Research, 2015, 46, 31.	1.1	21
50	United European Gastroenterology (UEG) and European Society for Neurogastroenterology and Motility (ESNM) consensus on functional dyspepsia. Neurogastroenterology and Motility, 2021, 33, e14238.	1.6	21
51	Emergence of CTX-M-2-producing Escherichia coli in diseased horses: evidence of genetic exchanges of blaCTX-M-2 linked to ISCR1. Journal of Antimicrobial Chemotherapy, 2012, 67, 1289-1291.	1.3	20
52	Diversity in bacterium-host interactions within the species Helicobacter heilmannii sensu stricto. Veterinary Research, 2013, 44, 65.	1.1	20
53	Gastric <i>De Novo</i> Muc13 Expression and Spasmolytic Polypeptide-Expressing Metaplasia during Helicobacter heilmannii Infection. Infection and Immunity, 2014, 82, 3227-3239.	1.0	20
54	Oral glutathione supplementation drastically reduces Helicobacter-induced gastric pathologies. Scientific Reports, 2016, 6, 20169.	1.6	20

#	Article	IF	Citations
55	Studying the effect of administration route and treatment dose on the selection of enrofloxacin resistance in commensal Escherichia coli in broilers. Journal of Antimicrobial Chemotherapy, 2017, 72, 1991-2001.	1.3	20
56	The F18 fimbrial adhesin FedF is highly conserved among F18 isolates. Veterinary Microbiology, 2005, 110, 277-283.	0.8	19
57	Genome Sequence of Helicobacter heilmannii Sensu Stricto ASB1 Isolated from the Gastric Mucosa of a Kitten with Severe Gastritis. Genome Announcements, $2013,1,\ldots$	0.8	19
58	Presence of Helicobacter suis on pork carcasses. International Journal of Food Microbiology, 2014, 187, 73-76.	2.1	19
59	Development of New <scp>PCR</scp> Primers by Comparative Genomics for the Detection of <i><scp>H</scp>elicobacter suis</i> in Gastric Biopsy Specimens. Helicobacter, 2014, 19, 260-271.	1.6	19
60	Helicobacter and the Potential Role in Neurological Disorders: There Is More Than Helicobacter pylori. Frontiers in Immunology, 2020, 11, 584165.	2.2	19
61	A comparison of <i>Helicobacter pylori</i> and nonâ€ <i>Helicobacter pylori Helicobacter</i> spp. Binding to Canine Gastric Mucosa with Defined Gastric Glycophenotype. Helicobacter, 2014, 19, 249-259.	1.6	16
62	Antimicrobial Susceptibility Pattern of Helicobacter heilmannii and Helicobacter ailurogastricus Isolates. Microorganisms, 2020, 8, 957.	1.6	15
63	Diversity of zoonotic enterohepatic Helicobacter species and detection of a putative novel gastric Helicobacter species in wild and wild-born captive chimpanzees and western lowland gorillas. Veterinary Microbiology, 2014, 174, 186-194.	0.8	14
64	The <i>Helicobacter heilmannii hofE</i> and <i>hofF</i> Genes are Essential for Colonization of the Gastric Mucosa and Play a Role in <scp>IL</scp> â€1βâ€Induced Gastric <scp>MUC</scp> 13 Expression. Helicobacter, 2016, 21, 504-522.	1.6	14
65	A novel isolation protocol and probeâ€based <scp>RT</scp> â€ <scp>PCR</scp> for diagnosis of gastric infections with the zoonotic pathogen <i>Helicobacter suis</i> . Helicobacter, 2017, 22, e12369.	1.6	14
66	Effects of intestinal alkaline phosphatase on intestinal barrier function in a cecal ligation and puncture (CLP)â€induced mouse model for sepsis. Neurogastroenterology and Motility, 2020, 32, e13754.	1.6	14
67	Presence of Helicobacter and Campylobacter species in faecal samples from zoo mammals. Veterinary Microbiology, 2018, 219, 49-52.	0.8	13
68	Effect of residual doxycycline concentrations on resistance selection and transfer in porcine commensal Escherichia coli. International Journal of Antimicrobial Agents, 2018, 51, 123-127.	1.1	13
69	Speciesâ€specific immunity to <i>Helicobacter suis</i> . Helicobacter, 2017, 22, e12375.	1.6	12
70	Differentiation of Gastric Helicobacter Species Using MALDI-TOF Mass Spectrometry. Pathogens, 2021, 10, 366.	1.2	12
71	The Other Helicobacters. Helicobacter, 2011, 16, 70-75.	1.6	11
72	Immunization with the immunodominant Helicobacter suis urease subunit B induces partial protection against H. suis infection in a mouse model. Veterinary Research, 2012, 43, 72.	1.1	11

#	Article	IF	Citations
73	Helicobacter suis affects the health and function of porcine gastric parietal cells. Veterinary Research, 2016, 47, 101.	1.1	11
74	Effect of Different Adjuvants on Protection and Side-Effects Induced by Helicobacter suis Whole-Cell Lysate Vaccination. PLoS ONE, 2015, 10, e0131364.	1.1	11
75	Presence of extended-spectrum Â-lactamase-producing Escherichia coli in wild geese. Journal of Antimicrobial Chemotherapy, 2011, 66, 1643-1644.	1.3	10
76	Purification of <i><scp>H</scp>elicobacter suis</i> Strains From Biphasic Cultures by Single Colony Isolation: Influence on Strain Characteristics. Helicobacter, 2015, 20, 206-216.	1.6	10
77	Non-Helicobacter pylori Helicobacter Infections in Humans and Animals. , 2016, , 233-269.		10
78	Risk of cross-contamination due to the use of antimicrobial medicated feed throughout the trail of feed from the feed mill to the farm. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 1-12.	1.1	10
79	A Potential New Human Pathogen Belonging to Helicobacter Genus, Identified in a Bloodstream Infection. Frontiers in Microbiology, 2017, 8, 2533.	1.5	10
80	The effect of a commercial competitive exclusion product on the selection of enrofloxacin resistance in commensal <i>E. coli</i> i> in broilers. Avian Pathology, 2018, 47, 443-454.	0.8	10
81	Local Colonic Administration of a Serine Protease Inhibitor Improves Post-Inflammatory Visceral Hypersensitivity in Rats. Pharmaceutics, 2021, 13, 811.	2.0	10
82	Comparative virulence of <i>in vitro</i> â€cultured primateâ€and pigâ€associated <i>Helicobacter suis</i> strains in a BALB/c mouse and a Mongolian gerbil model. Helicobacter, 2017, 22, e12349.	1.6	9
83	Nosocomial Intravascular Catheter Infections with Extended-spectrum Beta-lactamase-producingEscherichia coliin Calves after Strain Introduction from a Commercial Herd. Transboundary and Emerging Diseases, 2017, 64, 130-136.	1.3	8
84	Isolation and Characterization of Clinical RSV Isolates in Belgium during the Winters of 2016–2018. Viruses, 2019, 11, 1031.	1.5	8
85	Extended spectrum \hat{I}^2 -lactamase producing Escherichia coli in broiler breeding roosters: Presence in the reproductive tract and effect on sperm motility. Animal Reproduction Science, 2015, 159, 205-211.	0.5	6
86	Methicillin resistant staphylococci and broad-spectrum \hat{l}^2 -lactamase producing Enterobacteriaceae in horses. Veterinary Microbiology, 2013, 167, 67-77.	0.8	5
87	New broad-spectrum \hat{l}^2 -lactamases emerging among Enterobacteriaceae from healthy cats and dogs: A public health concern?. International Journal of Antimicrobial Agents, 2014, 44, 81-82.	1.1	5
88	Selection and transfer of an Inci1- <i>tet</i> (A) plasmid of <i>Escherichia coli</i> in an <i>exÂvivo</i> model of the porcine caecum at doxycycline concentrations caused by crosscontaminated feed. Journal of Applied Microbiology, 2017, 123, 1312-1320.	1.4	5
89	Comparative genomics of Flavobacterium columnare unveils novel insights in virulence and antimicrobial resistance mechanisms. Veterinary Research, 2021, 52, 18.	1.1	5
90	The Effect of a Novel Serine Protease Inhibitor on Inflammation and Intestinal Permeability in a Murine Colitis Transfer Model. Frontiers in Pharmacology, 2021, 12, 682065.	1.6	5

#	Article	IF	CITATIONS
91	The Effect of Serine Protease Inhibitors on Visceral Pain in Different Rodent Models With an Intestinal Insult. Frontiers in Pharmacology, 2022, 13, .	1.6	4
92	Distinct transcriptome signatures of Helicobacter suis and Helicobacter heilmannii strains upon adherence to human gastric epithelial cells. Veterinary Research, 2020, 51, 62.	1.1	3
93	Helicobacter heilmannii sp. nov., isolated from feline gastric mucosa. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 1016-1016.	0.8	3
94	Biopsy Sampling in Upper Gastrointestinal Endoscopy: A Survey from 10 Tertiary Referral Centres Across Europe. Digestive Diseases, 2021, 39, 179-189.	0.8	2
95	Gastric Helicobacter suis Infection Partially Protects against Neurotoxicity in A 6-OHDA Parkinson's Disease Mouse Model. International Journal of Molecular Sciences, 2021, 22, 11328.	1.8	2
96	P097 Intestinal barrier dysfunction in association with fibrosis during experimental acute and chronic colitis in mice. Journal of Crohn's and Colitis, 2019, 13, S134-S136.	0.6	1
97	Rhesus macaques are most likely the ancestral source of <i>Helicobacter suis</i> infection in pigs and not cynomolgus macaques. Helicobacter, 2020, 25, e12689.	1.6	1
98	Sall72 - Effects of the Non-Selective Protease Inhibitor Nafamostat Mesylate on Intestinal Permeability and Bacterial Translocation in a Murine Model of Sepsis. Gastroenterology, 2018, 154, S-267-S-268.	0.6	0
99	Su1020 – Nafamostat Mesylate, a Broad Spectrum Serine Protease Inhibitor, Reduces Intraperitoneal Adhesion Formation in a Murine Caecal Ligation and Puncture Model for Sepsis. Gastroenterology, 2019, 156, S-487-S-488.	0.6	O
100	103 – Beneficial Effects of a Locally Administered Serine Protease Inhibitor in a Post-Inflammatory Rat Model for Irritable Bowel Syndrome. Gastroenterology, 2019, 156, S-25-S-26.	0.6	0
101	Mo1571 INTRARECTAL ADMINISTRATION OF A TRPV4 ANTAGONIST IMPROVES POST-INFLAMMATORY VISCERAL HYPERSENSITIVITY IN A RAT MODEL FOR IRRITABLE BOWEL SYNDROME. Gastroenterology, 2020, 158, S-900.	0.6	0
102	Su1367 EXHALED 13C DURING A 13C-UREA BREATH TEST FOR THE PREOPERATIVE DETECTION OF HELICOBACTER PYLORI IS A MARKER FOR POSTOPERATIVE WEIGHT LOSS AFTER BARIATRIC SURGERY Gastroenterology, 2020, 158, S-567.	0.6	0
103	P1611PRE-ANALYTICAL CONSIDERATIONS IN STUDYING CIRCULATING MICRORNA EXPRESSION: COMPARISON BETWEEN PAIRED EDTA PLASMA, EDTA WHOLE BLOOD AND PAXGENE BLOOD RNA TUBES. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	O
104	394 RESOLVIN D2 REVERSES VISCERAL HYPERSENSITIVITY IN A POSTINFLAMMATORY RAT MODEL FOR IRRITABLE BOWEL SYDNROME. Gastroenterology, 2020, 158, S-71-S-72.	0.6	0
105	895 REDUCTION OF INTRAPERITONEAL ADHESIOGENESIS BY PROTEASE INHIBITORS IN A CECAL LIGATION AND PUNCTURE MODEL OF SEPSIS AND PERITONITIS Gastroenterology, 2020, 158, S-1537.	0.6	0
106	Sullor Exploring the Molecular Signaling Pathways of Mucl and Mucl3 in Intestinal Epithelial Cells During Inflammation in Vitro: Important Mediators of Intestinal Barrier Integrity?. Gastroenterology, 2020, 158, S-509.	0.6	0