
Cristina Della Pina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/300387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in Polyaniline for Biomedical Applications. Current Medicinal Chemistry, 2022, 29, 329-357.	2.4	16
2	Doped-polyaniline based sorbents for the simultaneous removal of heavy metals and dyes from water: Unravelling the role of synthesis method and doping agent. Chemosphere, 2022, 286, 131941.	8.2	18
3	A review of advances in multifunctional XTiO3 perovskite-type oxides as piezo-photocatalysts for environmental remediation and energy production. Journal of Hazardous Materials, 2022, 421, 126792.	12.4	62
4	Recent advances and challenges of emerging solar-driven steam and the contribution of photocatalytic effect. Chemical Engineering Journal, 2022, 431, 134024.	12.7	85
5	The versatility of gold: From heterogeneous catalysis to biomedicine. Inorganica Chimica Acta, 2022, 537, 120959.	2.4	4
6	Plant nutrients recovery from agro-food wastewaters using microbial electrochemical technologies based on porous biocompatible materials. Journal of Environmental Chemical Engineering, 2022, 10, 107453.	6.7	3
7	Presence of perfluoroalkyl substances in Mediterranean sea and North Italian lake fish addressed to Italian consumer. International Journal of Food Science and Technology, 2022, 57, 1303-1316.	2.7	10
8	One pot synthesis of <i>thio</i> -glycosides <i>via</i> aziridine opening reactions. Organic and Biomolecular Chemistry, 2021, 19, 233-247.	2.8	6
9	A Journey into the Determination of Polyaniline Molecular Weight. Advanced Materials Science and Technology, 2021, 3, 8-21.	0.2	0
10	Development of an experimental test rig for the pyrolysis of plastic residues and waste tires. E3S Web of Conferences, 2021, 238, 01013.	0.5	0
11	Zn ²⁺ removal from the aqueous environment using a polydopamine/hydroxyapatite/Fe ₃ O ₄ magnetic composite under ultrasonic waves. RSC Advances, 2021, 11, 27309-27321.	3.6	70
12	Targeting the "Sweet Side―of Tumor with Glycan-Binding Molecules Conjugated-Nanoparticles: Implications in Cancer Therapy and Diagnosis. Nanomaterials, 2021, 11, 289.	4.1	18
13	Size-dependent catalytic effect of magnetite nanoparticles in the synthesis of tunable magnetic polyaniline nanocomposites. Chemical Papers, 2021, 75, 5057-5069.	2.2	5
14	Piezo-enhanced photocatalytic diclofenac mineralization over ZnO. Ultrasonics Sonochemistry, 2021, 75, 105615.	8.2	26
15	Pigmented Corn Varieties as Functional Ingredients for Gluten-Free Products. Foods, 2021, 10, 1770.	4.3	13
16	Experimental methods in chemical engineering: Mössbauer spectroscopy. Canadian Journal of Chemical Engineering, 2021, 99, 2105-2114.	1.7	7
17	Oxidative Inactivation of SARS-CoV-2 on Photoactive AgNPs@TiO2 Ceramic Tiles. International Journal of Molecular Sciences, 2021, 22, 8836.	4.1	20
18	SWOT analysis of photocatalytic materials towards large scale environmental remediation. Current Opinion in Chemical Engineering, 2021, 33, 100696.	7.8	51

#	Article	IF	CITATIONS
19	Self-cleaning, photocatalytic films on aluminum plates for multi-pollutant air remediation: promoting adhesion and activity by SiO2 interlayers. Nanotechnology, 2021, 32, 475710.	2.6	1
20	Comparison of the photoactivity of several semiconductor oxides in floating aerogel and suspension systems towards the reduction of Cr(VI) under visible light. Chemosphere, 2021, 281, 130839.	8.2	34
21	Solar Light Photoactive Floating Polyaniline/TiO2 Composites for Water Remediation. Nanomaterials, 2021, 11, 3071.	4.1	10
22	Catalysis with Silver: From Complexes and Nanoparticles to MORALs and Single-Atom Catalysts. Catalysts, 2020, 10, 1343.	3.5	18
23	Polyanilines as New Sorbents for Hydrocarbons Removal from Aqueous Solutions. Materials, 2020, 13, 2161.	2.9	9
24	Nonabsorbable Iron(III) binding polymers: Synthesis and evaluation of the chelating properties. Polymer Testing, 2020, 90, 106693.	4.8	3
25	Extra-Small Gold Nanospheres Decorated With a Thiol Functionalized Biodegradable and Biocompatible Linear Polyamidoamine as Nanovectors of Anticancer Molecules. Frontiers in Bioengineering and Biotechnology, 2020, 8, 132.	4.1	19
26	Photocatalytic and Oxidative Synthetic Pathways for Highly Efficient PANI-TiO2 Nanocomposites as Organic and Inorganic Pollutant Sorbents. Nanomaterials, 2020, 10, 441.	4.1	26
27	Sonophotocatalytic degradation of sodium diclofenac using low power ultrasound and micro sized TiO2. Ultrasonics Sonochemistry, 2020, 67, 105123.	8.2	35
28	Protective effect of <i>Vigna unguiculata</i> extract against aging and neurodegeneration. Aging, 2020, 12, 19785-19808.	3.1	9
29	Degradation of Carbamazepine by Photo(electro)catalysis on Nanostructured TiO2 Meshes: Transformation Products and Reaction Pathways. Catalysts, 2020, 10, 169.	3.5	42
30	Degradation of emerging organic pollutants in wastewater effluents by electrochemical photocatalysis on nanostructured TiO2 meshes. Water Research, 2019, 164, 114920.	11.3	83
31	Metamaterial architecture from a self-shaping carnivorous plant. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18777-18782.	7.1	21
32	Insights on the photocatalytic degradation processes supported by TiO2/WO3 systems. The case of ethanol and tetracycline. Catalysis Today, 2019, 328, 210-215.	4.4	32
33	Ulvan as novel reducing and stabilizing agent from renewable algal biomass: Application to green synthesis of silver nanoparticles. Carbohydrate Polymers, 2019, 203, 310-321.	10.2	103
34	Concurrent role of metal (Sn, Zn) and N species in enhancing the photocatalytic activity of TiO2 under solar light. Catalysis Today, 2018, 313, 40-46.	4.4	31
35	Polyaniline (PANI): an innovative support for sampling and removal of VOCs in air matrices. Journal of Hazardous Materials, 2018, 344, 308-315.	12.4	31
36	Methionine supplementation stimulates mitochondrial respiration. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1901-1913.	4.1	17

#	Article	IF	CITATIONS
37	Triply green polyaniline: UV irradiation-induced synthesis of a highly porous PANI/TiO ₂ composite and its application in dye removal. Chemical Communications, 2018, 54, 10702-10705.	4.1	17
38	Inkjet printed doped polyaniline: Navigating through physics and chemistry for the next generation devices. Applied Surface Science, 2018, 456, 246-258.	6.1	15
39	The role played by different TiO2 features on the photocatalytic degradation of paracetamol. Applied Surface Science, 2017, 424, 198-205.	6.1	22
40	Emerging pollutant mixture mineralization by TiO2 photocatalysts. The role of the water medium. Photochemical and Photobiological Sciences, 2017, 16, 60-66.	2.9	55
41	Clean Transformation of Ethanol to Useful Chemicals. The Behavior of a Gold-Modified Silicalite Catalyst. Molecules, 2016, 21, 379.	3.8	4
42	Ultrathin electrospun PANI nanofibers for neuronal tissue engineering. Journal of Applied Polymer Science, 2016, 133, .	2.6	13
43	Annealing effect on electromechanical behaviour of polyanilines organic acids-doped. Sensors and Actuators A: Physical, 2016, 252, 59-66.	4.1	2
44	Industrielle Anwendungen von Goldkatalysatoren. Angewandte Chemie, 2016, 128, 14420-14428.	2.0	17
45	Industrial Applications of Gold Catalysis. Angewandte Chemie - International Edition, 2016, 55, 14210-14217.	13.8	161
46	Advances in Poly (4-aminodiphenylaniline) Nanofibers Preparation by Electrospinning Technique. Journal of Nanoscience and Nanotechnology, 2016, 16, 5369-5377.	0.9	2
47	Cold Nanomaterials: From Preparation to Pharmaceutical Design and Application. Current Pharmaceutical Design, 2016, 22, 1485-1493.	1.9	13
48	Bioglycerol: a multifunctional aid for the construction industry. Biofuels, Bioproducts and Biorefining, 2015, 9, 468-475.	3.7	1
49	Advanced Nanomaterials for Energy and Environmental Applications. Journal of Nanomaterials, 2015, 2015, 1-2.	2.7	Ο
50	Effect of Salicylic Acid and 5-Sulfosalicylic Acid on UV-Vis Spectroscopic Characteristics, Morphology, and Contact Angles of Spin Coated Polyaniline and Poly(4-aminodiphenylaniline) Thin Films. Journal of Spectroscopy, 2015, 2015, 1-8.	1.3	5
51	Towards "Green―Smart Materials for Force and Strain Sensors: The Case of Polyaniline. Key Engineering Materials, 2015, 644, 157-162.	0.4	3
52	A green approach to magnetically-hard electrically-conducting polyaniline/CoFe2O4 nanocomposites. Composites Science and Technology, 2015, 110, 138-144.	7.8	30
53	Gold-Based Catalysts. RSC Green Chemistry, 2014, , 133-154.	0.1	1
54	Development of high sensitive polyaniline based piezoresistive films by conventional and green chemistry approaches. Sensors and Actuators A: Physical, 2014, 220, 13-21.	4.1	37

#	Article	IF	CITATIONS
55	Microwave characterization of magnetically hard and soft ferrite nanoparticles in K-band. Journal of Applied Physics, 2014, 116, 154306.	2.5	7
56	Biomineralized Anisotropic Gold Microplate–Macrophage Interactions Reveal Frustrated Phagocytosis-like Phenomenon: A Novel Paclitaxel Drug Delivery Vehicle. ACS Applied Materials & Interfaces, 2014, 6, 14679-14689.	8.0	44
57	Understanding the glycerol market. European Journal of Lipid Science and Technology, 2014, 116, 1432-1439.	1.5	302
58	Electromechanical properties of polyanilines prepared by two different approaches and their applicability in force measurements. Sensors and Actuators B: Chemical, 2014, 201, 395-401.	7.8	21
59	Electrospinning of Polyaniline: Effect of Different Raw Sources. Journal of Nanoscience and Nanotechnology, 2013, 13, 4744-4751.	0.9	26
60	Update on selective oxidation using gold. Chemical Society Reviews, 2012, 41, 350-369.	38.1	318
61	Polyaniline nanofibers: Towards pure electrospun PANI. , 2012, , .		7
62	One-pot synthesis of polyaniline/Fe3O4 nanocomposites with magnetic and conductive behaviour. Catalytic effect of Fe3O4 nanoparticles. Synthetic Metals, 2012, 162, 2250-2258.	3.9	20
63	Interaction of l-cysteine with naked gold nanoparticles supported on HOPG: a high resolution XPS investigation. Nanoscale, 2012, 4, 7727.	5.6	41
64	Oxidation of Alcohols and Carbohydrates. , 2012, , 309-329.		2
65	A green approach to chemical building blocks. The case of 3-hydroxypropanoic acid. Green Chemistry, 2011, 13, 1624.	9.0	97
66	Enhanced performance of the catalytic conversion of allyl alcohol to 3-hydroxypropionic acid using bimetallic gold catalysts. Faraday Discussions, 2011, 152, 367.	3.2	20
67	Gold-catalyzed oxidation in organic synthesis: a promise kept. Catalysis Science and Technology, 2011, 1, 1564.	4.1	44
68	Investigation of glycerol polymerization in the clinker grinding process. Green Chemistry, 2011, 13, 143-148.	9.0	11
69	Conductive materials by metal catalyzed polymerizationâ [~] †. Catalysis Today, 2011, 160, 11-27.	4.4	58
70	Optimizing operating conditions and electrochemical characterization of glucose–gluconate alkaline fuel cells. Journal of Power Sources, 2011, 196, 1273-1278.	7.8	11
71	Catalytic Transformation of Ethanol with Silicaliteâ€1: Influence of Pretreatments and Conditions on Activity and Selectivity. ChemCatChem, 2010, 2, 1587-1593.	3.7	7
72	Alkaline glucose oxidation on nanostructured gold electrodes. Gold Bulletin, 2010, 43, 57-64.	2.7	84

#	Article	IF	CITATIONS
73	Selective dehydrosulfurization of 3-mercaptopropionic acid to acrylic acid on silicalite catalyst. Catalysis Communications, 2010, 11, 456-459.	3.3	4
74	Selective deactivation of gold catalyst. Journal of Catalysis, 2009, 263, 92-97.	6.2	39
75	A green route to conducting polyaniline by copper catalysis. Journal of Catalysis, 2009, 267, 93-96.	6.2	55
76	Oxidation of Allyl Alcohol in the Presence of a Gold Catalyst: A Route to 3â€Hydroxypropionic Acid. ChemSusChem, 2009, 2, 57-58.	6.8	23
77	Recent advances in the conversion of bioglycerol into valueâ€added products. European Journal of Lipid Science and Technology, 2009, 111, 788-799.	1.5	81
78	Gold-catalysed synthesis of polypyrrole. Gold Bulletin, 2009, 42, 27-33.	2.7	26
79	Greening the Construction Industry: Enhancing the Performance of Cements by Adding Bioglycerol. ChemSusChem, 2008, 1, 809-812.	6.8	20
80	Facile synthesis of polyaniline using gold catalyst. Journal of Catalysis, 2008, 259, 1-4.	6.2	39
81	Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold–copper catalyst. Journal of Catalysis, 2008, 260, 384-386.	6.2	256
82	Selective oxidation using gold. Chemical Society Reviews, 2008, 37, 2077.	38.1	644
83	Gold Nanoparticles: From Preparation to Catalytic Evaluation. , 2008, , 253-262.		1
84	From Glycerol to Value-Added Products. Angewandte Chemie - International Edition, 2007, 46, 4434-4440.	13.8	1,443
85	One-pot catalytic synthesis of higher aliphatic ketones. Applied Catalysis A: General, 2007, 321, 35-39.	4.3	6
86	Catalytic performance of gold catalysts in the total oxidation of VOCs. Gold Bulletin, 2007, 40, 67-72.	2.7	29
87	Selective oxidation of tertiary amines on gold catalysts. Topics in Catalysis, 2007, 44, 325-329.	2.8	34
88	New routes to Vitamin K3. Catalysis Today, 2007, 121, 58-64.	4.4	62
89	Effect of Au in Cs2.5H1.5PVMo11O40 and Cs2.5H1.5PVMo11O40/Au/TiO2 catalysts in the gas phase oxidation of propylene. Catalysis Today, 2007, 122, 307-316.	4.4	15
90	Mono- and bimetallic catalysts for glucose oxidation. Journal of Molecular Catalysis A, 2006, 251, 89-92.	4.8	126

#	Article	IF	CITATIONS
91	One-pot electrocatalytic oxidation of glycerol to DHA. Tetrahedron Letters, 2006, 47, 6993-6995.	1.4	118
92	Aerobic oxidation of glucose. Applied Catalysis A: General, 2006, 297, 1-7.	4.3	172
93	Is the biochemical route always advantageous? The case of glucose oxidation. Journal of Catalysis, 2006, 244, 122-125.	6.2	76
94	Aerobic Oxidation of Glucose with Gold Catalyst: Hydrogen Peroxide as Intermediate and Reagent. Advanced Synthesis and Catalysis, 2006, 348, 313-316.	4.3	220
95	Oxidation of alcohols and sugars using Au/C catalysts. Applied Catalysis A: General, 2005, 291, 204-209.	4.3	118
96	Aerobic oxidation of glucose I. Enzymatic catalysis. Journal of Catalysis, 2004, 228, 282-287.	6.2	52
97	The Catalytic Activity of ?Naked? Gold Particles. Angewandte Chemie - International Edition, 2004, 43, 5812-5815.	13.8	744
98	Gold Nanoparticles-catalyzed Oxidations in Organic Chemistry. , 0, , 427-455.		1
99	Liquid Phase Oxidation of Organic Compounds by Supported Metal-Based Catalysts with a Focus on Gold. , 0, , 221-262.		3