Kai Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3003796/publications.pdf Version: 2024-02-01

		218677	395702
33	3,847	26	33
papers	citations	h-index	g-index
33	33	33	5059
all docs	docs citations	times ranked	citing authors

KALMANC

#	Article	IF	CITATIONS
1	Iridiumâ€Based Multimetallic Porous Hollow Nanocrystals for Efficient Overallâ€Waterâ€Splitting Catalysis. Advanced Materials, 2017, 29, 1703798.	21.0	460
2	Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nature Communications, 2019, 10, 5231.	12.8	371
3	Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy and Environmental Science, 2019, 12, 1605-1612.	30.8	349
4	Metallic Grapheneâ€Like VSe ₂ Ultrathin Nanosheets: Superior Potassiumâ€lon Storage and Their Working Mechanism. Advanced Materials, 2018, 30, e1800036.	21.0	341
5	Pistachioâ€Shuckâ€Like MoSe ₂ /C Core/Shell Nanostructures for Highâ€Performance Potassiumâ€Ion Storage. Advanced Materials, 2018, 30, e1801812.	21.0	297
6	Emerging Dualâ€Atomicâ€6ite Catalysts for Efficient Energy Catalysis. Advanced Materials, 2021, 33, e2102576.	21.0	226
7	Ultrathin PtNiM (M = Rh, Os, and Ir) Nanowires as Efficient Fuel Oxidation Electrocatalytic Materials. Advanced Materials, 2019, 31, e1805833.	21.0	223
8	lridium–Tungsten Alloy Nanodendrites as pH-Universal Water-Splitting Electrocatalysts. ACS Central Science, 2018, 4, 1244-1252.	11.3	196
9	Thermolysis of Noble Metal Nanoparticles into Electronâ€Rich Phosphorusâ€Coordinated Noble Metal Single Atoms at Low Temperature. Angewandte Chemie - International Edition, 2019, 58, 14184-14188.	13.8	136
10	Wrinkled Rh ₂ P Nanosheets as Superior pHâ€Universal Electrocatalysts for Hydrogen Evolution Catalysis. Advanced Energy Materials, 2018, 8, 1801891.	19.5	116
11	Single-atom catalyst for high-performance methanol oxidation. Nature Communications, 2021, 12, 5235.	12.8	113
12	Irâ€Based Alloy Nanoflowers with Optimized Hydrogen Binding Energy as Bifunctional Electrocatalysts for Overall Water Splitting. Small Methods, 2020, 4, 1900129.	8.6	93
13	Ultrathin RuRh Alloy Nanosheets Enable High-Performance Lithium-CO2 Battery. Matter, 2020, 2, 1494-1508.	10.0	91
14	Core–shell nano-FeS ₂ @N-doped graphene as an advanced cathode material for rechargeable Li-ion batteries. Chemical Communications, 2016, 52, 986-989.	4.1	84
15	WO <i>_x</i> ‣urface Decorated PtNi@Pt Dendritic Nanowires as Efficient pHâ€Universal Hydrogen Evolution Electrocatalysts. Advanced Energy Materials, 2021, 11, 2003192.	19.5	82
16	Porous ZrNb ₂₄ O ₆₂ nanowires with pseudocapacitive behavior achieve high-performance lithium-ion storage. Journal of Materials Chemistry A, 2017, 5, 22297-22304.	10.3	71
17	Designing noble metal single-atom-loaded two-dimension photocatalyst for N2 and CO2 reduction via anion vacancy engineering. Science Bulletin, 2020, 65, 720-725.	9.0	67
18	Intermetallic Pd ₃ Pb Nanoplates Enhance Oxygen Reduction Catalysis with Excellent Methanol Tolerance. Small Methods, 2018, 2, 1700331.	8.6	66

Kai Wang

#	Article	lF	CITATIONS
19	A highly efficient atomically thin curved PdIr bimetallene electrocatalyst. National Science Review, 2021, 8, nwab019.	9.5	59
20	Metal Single Atom Strategy Greatly Boosts Photocatalytic Methyl Activation and C–C Coupling for the Coproduction of High-Value-Added Multicarbon Compounds and Hydrogen. ACS Catalysis, 2020, 10, 9109-9114.	11.2	47
21	Tuning structural stability and lithium-storage properties by d -orbital hybridization substitution in full tetrahedron Li 2 FeSiO 4 nanocrystal. Nano Energy, 2016, 20, 117-125.	16.0	44
22	Enhanced electron transfer and light absorption on imino polymer capped PdAg nanowire networks for efficient room-temperature dehydrogenation of formic acid. Journal of Materials Chemistry A, 2018, 6, 1979-1984.	10.3	43
23	Soft-contact conductive carbon enabling depolarization of LiFePO4 cathodes to enhance both capacity and rate performances of lithium ion batteries. Journal of Power Sources, 2016, 331, 232-239.	7.8	41
24	Fast rechargeable all-solid-state lithium ion batteries with high capacity based on nano-sized Li2FeSiO4 cathode by tuning temperature. Nano Energy, 2015, 16, 112-121.	16.0	37
25	Enhanced bifunctional fuel cell catalysis <i>via</i> Pd/PtCu core/shell nanoplates. Chemical Communications, 2018, 54, 1315-1318.	4.1	37
26	3D PtFe Clusters with Cubeâ€inâ€Cube Structure Enhance Oxygen Reduction Catalysis and Electrochemical Sensing. Small Methods, 2018, 2, 1800073.	8.6	34
27	Thermolysis of Noble Metal Nanoparticles into Electronâ€Rich Phosphorusâ€Coordinated Noble Metal Single Atoms at Low Temperature. Angewandte Chemie, 2019, 131, 14322-14326.	2.0	28
28	Ultrathin RuRh@(RuRh)O ₂ core@shell nanosheets as stable oxygen evolution electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 15746-15751.	10.3	24
29	Depolarization effects of Li ₂ FeSiO ₄ nanocrystals wrapped in different conductive carbon networks as cathodes for high performance lithium-ion batteries. RSC Advances, 2016, 6, 47723-47729.	3.6	19
30	Sn(ii,iv) steric and electronic structure effects enable self-selective doping on Fe/Si-sites of Li2FeSiO4 nanocrystals for high performance lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 24437-24445.	10.3	15
31	Ultrathin Metallic NbS ₂ Nanosheets with Unusual Intercalation Mechanism for Ultra‣table Potassiumâ€ion Storage. Advanced Functional Materials, 2022, 32, .	14.9	15
32	BiOCl/ultrathin polyaniline core/shell nanosheets with a sensitization mechanism for efficient visible-light-driven photocatalysis. Science China Materials, 2019, 62, 95-102.	6.3	14
33	FeOxand Si nano-dots as dual Li-storage centers bonded with graphene for high performance lithium ion batteries. Nanoscale, 2015, 7, 14344-14350.	5.6	8