
## Haralambos Hatzikirou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3003601/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | 'Go or Grow': the key to the emergence of invasion in tumour progression?. Mathematical Medicine<br>and Biology, 2012, 29, 49-65.                                                                           | 0.8 | 281       |
| 2  | The biology and mathematical modelling of glioma invasion: a review. Journal of the Royal Society<br>Interface, 2017, 14, 20170490.                                                                         | 1.5 | 156       |
| 3  | Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem. Physical Review E, 2014, 89, 022721.                                                             | 0.8 | 154       |
| 4  | Vocal production mechanisms in a non-human primate: morphological data and a model. Journal of<br>Human Evolution, 2005, 48, 85-96.                                                                         | 1.3 | 120       |
| 5  | MATHEMATICAL MODELLING OF GLIOBLASTOMA TUMOUR DEVELOPMENT: A REVIEW. Mathematical Models and Methods in Applied Sciences, 2005, 15, 1779-1794.                                                              | 1.7 | 117       |
| 6  | Evolutionary game theory elucidates the role of glycolysis in glioma progression and invasion. Cell<br>Proliferation, 2008, 41, 980-987.                                                                    | 2.4 | 117       |
| 7  | Identification of intrinsic in vitro cellular mechanisms for glioma invasion. Journal of Theoretical<br>Biology, 2011, 287, 131-147.                                                                        | 0.8 | 85        |
| 8  | An Emerging Allee Effect Is Critical for Tumor Initiation and Persistence. PLoS Computational Biology, 2015, 11, e1004366.                                                                                  | 1.5 | 81        |
| 9  | Studying the emergence of invasiveness in tumours using game theory. European Physical Journal B, 2008, 63, 393-397.                                                                                        | 0.6 | 69        |
| 10 | Cellular Automata as Microscopic Models of Cell Migration in Heterogeneous Environments. Current<br>Topics in Developmental Biology, 2008, 81, 401-434.                                                     | 1.0 | 66        |
| 11 | Density-dependent quiescence in glioma invasion: instability in a simple reaction–diffusion model for the migration/proliferation dichotomy. Journal of Biological Dynamics, 2012, 6, 54-71.                | 0.8 | 52        |
| 12 | Prediction of traveling front behavior in a lattice-gas cellular automaton model for tumor invasion.<br>Computers and Mathematics With Applications, 2010, 59, 2326-2339.                                   | 1.4 | 50        |
| 13 | Investigation of the Migration/Proliferation Dichotomy and its Impact on Avascular Glioma Invasion.<br>Mathematical Modelling of Natural Phenomena, 2012, 7, 105-135.                                       | 0.9 | 50        |
| 14 | Why one-size-fits-all vaso-modulatory interventions fail to control glioma invasion: in silico insights. Scientific Reports, 2016, 6, 37283.                                                                | 1.6 | 47        |
| 15 | Multiple discontinuities in nonhuman vocal tracts – A reply. Journal of Human Evolution, 2006, 50, 222-225.                                                                                                 | 1.3 | 42        |
| 16 | Mechanical Control of Cell Proliferation Increases Resistance to Chemotherapeutic Agents. Physical<br>Review Letters, 2020, 125, 128103.                                                                    | 2.9 | 42        |
| 17 | In Silico Analysis of Cell Cycle Synchronisation Effects in Radiotherapy of Tumour Spheroids. PLoS<br>Computational Biology, 2013, 9, e1003295.                                                             | 1.5 | 39        |
| 18 | Decreased plasma phospholipid concentrations and increased acid sphingomyelinase activity are<br>accurate biomarkers for community-acquired pneumonia. Journal of Translational Medicine, 2019, 17,<br>365. | 1.8 | 38        |

HARALAMBOS HATZIKIROU

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Lattice-Gas Cellular Automaton Models for Biology: From Fluids to Cells. Acta Biotheoretica, 2010, 58, 329-340.                                                                                                            | 0.7 | 35        |
| 20 | Hook length of the bacterial flagellum is optimized for maximal stability of the flagellar bundle. PLoS<br>Biology, 2018, 16, e2006989.                                                                                    | 2.6 | 31        |
| 21 | Dynamic density functional theory of solid tumor growth: Preliminary models. AIP Advances, 2012, 2, 011210.                                                                                                                | 0.6 | 31        |
| 22 | Integrative physical oncology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 1-14.                                                                                                               | 6.6 | 29        |
| 23 | Mathematical Oncology: How Are the Mathematical and Physical Sciences Contributing to the War on Breast Cancer?. Current Breast Cancer Reports, 2010, 2, 121-129.                                                          | 0.5 | 27        |
| 24 | From Immune Cells to Self-Organizing Ultra-Dense Small Cell Networks. IEEE Journal on Selected<br>Areas in Communications, 2016, 34, 800-811.                                                                              | 9.7 | 26        |
| 25 | A Mechanistic Collective Cell Model for Epithelial Colony Growth and Contact Inhibition. Biophysical<br>Journal, 2015, 109, 1347-1357.                                                                                     | 0.2 | 24        |
| 26 | Multidimensional Analysis Integrating Human T-Cell Signatures in Lymphatic Tissues with Sex of<br>Humanized Mice for Prediction of Responses after Dendritic Cell Immunization. Frontiers in<br>Immunology, 2017, 8, 1709. | 2.2 | 22        |
| 27 | In-silico insights on the prognostic potential of immune cell infiltration patterns in the breast<br>lobular epithelium. Scientific Reports, 2016, 6, 33322.                                                               | 1.6 | 21        |
| 28 | Cancer therapeutic potential of combinatorial immuno- and vasomodulatory interventions. Journal of the Royal Society Interface, 2015, 12, 20150439.                                                                        | 1.5 | 16        |
| 29 | Extracting cellular automaton rules from physical Langevin equation models for single and collective cell migration. Journal of Mathematical Biology, 2017, 75, 1075-1100.                                                 | 0.8 | 16        |
| 30 | <i>In silico</i> tumor control induced via alternating immunostimulating and immunosuppressive phases. Virulence, 2016, 7, 174-186.                                                                                        | 1.8 | 15        |
| 31 | Improving personalized tumor growth predictions using a Bayesian combination of mechanistic modeling and machine learning. Communications Medicine, 2021, 1, .                                                             | 1.9 | 15        |
| 32 | Therapeutic Potential of Bacteria against Solid Tumors. Cancer Research, 2017, 77, 1553-1563.                                                                                                                              | 0.4 | 14        |
| 33 | Cellular automaton models for time-correlated random walks: derivation and analysis. Scientific<br>Reports, 2017, 7, 16952.                                                                                                | 1.6 | 14        |
| 34 | BIO-LGCA: A cellular automaton modelling class for analysing collective cell migration. PLoS<br>Computational Biology, 2021, 17, e1009066.                                                                                 | 1.5 | 14        |
| 35 | On the Immunological Consequences of Conventionally Fractionated Radiotherapy. IScience, 2020, 23, 100897.                                                                                                                 | 1.9 | 13        |
| 36 | Model-based Comparison of Cell Density-dependent Cell Migration Strategies. Mathematical Modelling<br>of Natural Phenomena, 2015, 10, 94-107.                                                                              | 0.9 | 10        |

HARALAMBOS HATZIKIROU

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | On the Impact of Chemo-Mechanically Induced Phenotypic Transitions in Gliomas. Cancers, 2019, 11, 716.                                                                                | 1.7 | 10        |
| 38 | Statistical mechanics of cell decision-making: the cell migration force distribution. Journal of the Mechanical Behavior of Materials, 2018, 27, .                                    | 0.7 | 9         |
| 39 | A least microenvironmental uncertainty principle (LEUP) as a generative model of collective cell migration mechanisms. Scientific Reports, 2020, 10, 22371.                           | 1.6 | 8         |
| 40 | Entropy-driven cell decision-making predicts †fluid-to-solid' transition in multicellular systems. New<br>Journal of Physics, 2020, 22, 123034.                                       | 1.2 | 7         |
| 41 | Lattice-Gas Cellular Automaton Modeling of Emergent Behavior in Interacting Cell Populations.<br>Understanding Complex Systems, 2010, , 301-331.                                      | 0.3 | 6         |
| 42 | Modelling collective cell motion: are on- and off-lattice models equivalent?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190378.            | 1.8 | 6         |
| 43 | Combining dynamic modeling with machine learning can be the key for the integration of mathematical and clinical oncology. Physics of Life Reviews, 2022, 40, 1-2.                    | 1.5 | 6         |
| 44 | Inferring the effect of interventions on COVID-19 transmission networks. Scientific Reports, 2021, 11, 21913.                                                                         | 1.6 | 5         |
| 45 | A minimal modeling framework of radiation and immune system synergy to assist radiotherapy planning. Journal of Theoretical Biology, 2020, 486, 110099.                               | 0.8 | 4         |
| 46 | Close to Optimal Cell Sensing Ensures the Robustness of Tissue Differentiation Process: The Avian<br>Photoreceptor Mosaic Case. Entropy, 2021, 23, 867.                               | 1.1 | 4         |
| 47 | Title is missing!. Acta Physica Polonica B, Proceedings Supplement, 2011, 4, 167.                                                                                                     | 0.0 | 4         |
| 48 | The Extrinsic Noise Effect on Lateral Inhibition Differentiation Waves. ACM Transactions on Modeling and Computer Simulation, 2016, 26, 1-18.                                         | 0.6 | 3         |
| 49 | Image analysis of immune cell patterns in the human mammary gland during the menstrual cycle refines lymphocytic lobulitis. Breast Cancer Research and Treatment, 2017, 164, 305-315. | 1.1 | 3         |
| 50 | Effect of Vascularization on Glioma Tumor Growth. , 2012, , 237-259.                                                                                                                  |     | 3         |
| 51 | Cellular Automaton Modeling of Tumor Invasion. , 2012, , 456-464.                                                                                                                     |     | 2         |
| 52 | Cellular Automaton Modeling of Tumor Invasion. , 2020, , 851-863.                                                                                                                     |     | 2         |
| 53 | Encoding of cellular positional information and maximum capacity of parallel coupled channels. , 2014, , .                                                                            |     | 1         |
| 54 | A Novel Averaging Principle Provides Insights in the Impact of Intratumoral Heterogeneity on Tumor<br>Progression. Mathematics, 2021, 9, 2530.                                        | 1.1 | 1         |

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Cellular Automaton Modeling of Tumor Invasion. , 2014, , 1-13.                                                                                                             |     | 1         |
| 56 | Investigating the Physical Effects in Bacterial Therapies for Avascular Tumors. Frontiers in Microbiology, 2020, 11, 1083.                                                 | 1.5 | 0         |
| 57 | Lattice-Gas Cellular Automaton Models. , 2013, , 1106-1108.                                                                                                                |     | 0         |
| 58 | Detecting Emergent Phenomena in Cellular Automata Using Temporal Description Logics. Lecture<br>Notes in Computer Science, 2014, , 357-366.                                | 1.0 | 0         |
| 59 | Cellular Automaton Modeling of Tumor Invasion. , 2019, , 1-13.                                                                                                             |     | 0         |
| 60 | On the Immunological Consequences of Conventionally Fractionated Radiotherapy: In silico<br>Insights. SSRN Electronic Journal, 0, , .                                      | 0.4 | 0         |
| 61 | Corrigendum to: Statistical mechanics of cell decision-making: the cell migration force distribution.<br>Journal of the Mechanical Behavior of Materials, 2022, 31, 37-38. | 0.7 | 0         |
| 62 | Does company performance really improve following mergers? A pre-post analysis of differences in Greece. Problems and Perspectives in Management, 2022, 20, 543-553.       | 0.5 | 0         |