Carolina Abdala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3003169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Auditory threshold sensitivity of the human neonate as measured by the auditory brainstem response. Hearing Research, 1997, 104, 27-38.	2.0	124
2	Distortion product otoacoustic emission (2 <i>f</i> 1â^' <i>f</i> 2) amplitude as a function of <i>f</i> 2/ <i>f</i> 1 frequency ratio and primary tone level separation in human adults and neonates. Journal of the Acoustical Society of America, 1996, 100, 3726-3740.	1.1	84
3	Distortion product otoacoustic emission suppression tuning curves in human adults and neonates. Hearing Research, 1996, 98, 38-53.	2.0	80
4	Considering distortion product otoacoustic emission fine structure in measurements of the medial olivocochlear reflex. Journal of the Acoustical Society of America, 2009, 125, 1584-1594.	1.1	76
5	Maturation and Aging of the Human Cochlea: A View through the DPOAE Looking Glass. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 403-421.	1.8	68
6	Theory of forward and reverse middle-ear transmission applied to otoacoustic emissions in infant and adult ears. Journal of the Acoustical Society of America, 2007, 121, 978-993.	1.1	63
7	The development of frequency resolution in humans as revealed by the auditory brainâ€stem response recorded with notchedâ€noise masking. Journal of the Acoustical Society of America, 1995, 98, 921-930.	1.1	62
8	Morphological and Functional Ear Development. Springer Handbook of Auditory Research, 2012, , 19-59.	0.7	62
9	Maturation of medial efferent system function in humans. Journal of the Acoustical Society of America, 1999, 105, 2392-2402.	1.1	61
10	A developmental study of distortion product otoacoustic emission (2f1-f2) suppression in humans. Hearing Research, 1998, 121, 125-138.	2.0	60
11	Maturation of the human cochlear amplifier: Distortion product otoacoustic emission suppression tuning curves recorded at low and high primary tone levels. Journal of the Acoustical Society of America, 2001, 110, 1465-1476.	1.1	48
12	Distortion product otoacoustic emission (2f1-f2) amplitude growth in human adults and neonates. Journal of the Acoustical Society of America, 2000, 107, 446-456.	1.1	46
13	Effects of middle-ear immaturity on distortion product otoacoustic emission suppression tuning in infant ears. Journal of the Acoustical Society of America, 2006, 120, 3832-3842.	1.1	42
14	Gender distinctions and lateral asymmetry in the low-level auditory brainstem response of the human neonate. Hearing Research, 1998, 126, 58-66.	2.0	41
15	Hearing Threshold as Measured by Auditory Brain Stem Response in Human Neonates. Ear and Hearing, 1996, 17, 395-401.	2.1	38
16	Maturation of the human medial efferent reflex revisited. Journal of the Acoustical Society of America, 2013, 133, 938-950.	1.1	38
17	Distortion product otoacoustic emission phase and component analysis in human newborns. Journal of the Acoustical Society of America, 2010, 127, 316-325.	1.1	37
18	Frequency contribution to the clickâ€evoked auditory brainâ€stem response in human adults and infants. Journal of the Acoustical Society of America, 1995, 97, 2394-2404.	1.1	36

CAROLINA ABDALA

#	Article	IF	CITATIONS
19	Breaking away: Violation of distortion emission phase-frequency invariance at low frequencies. Journal of the Acoustical Society of America, 2011, 129, 3115-3122.	1.1	35
20	The Development of Cochlear Frequency Resolution in the Human Auditory System. Ear and Hearing, 1996, 17, 374-385.	2.1	32
21	Distortion Product Otoacoustic Emission Suppression in Subjects with Auditory Neuropathy. Ear and Hearing, 2000, 21, 542-553.	2.1	32
22	Aging of the medial olivocochlear reflex and associations with speech perception. Journal of the Acoustical Society of America, 2014, 135, 754-765.	1.1	32
23	Optimizing swept-tone protocols for recording distortion-product otoacoustic emissions in adults and newborns. Journal of the Acoustical Society of America, 2015, 138, 3785-3799.	1.1	31
24	Distortion product otoacoustic emission suppression tuning and acoustic admittance in human infants: Birth through 6 months. Journal of the Acoustical Society of America, 2007, 121, 3617-3627.	1.1	29
25	Level dependence of distortion product otoacoustic emission phase is attributed to component mixing. Journal of the Acoustical Society of America, 2011, 129, 3123-3133.	1.1	29
26	Reflection- and Distortion-Source Otoacoustic Emissions: Evidence for Increased Irregularity in the Human Cochlea During Aging. JARO - Journal of the Association for Research in Otolaryngology, 2018, 19, 493-510.	1.8	28
27	The breaking of cochlear scaling symmetry in human newborns and adults. Journal of the Acoustical Society of America, 2011, 129, 3104-3114.	1.1	27
28	A comparative study of distortion-product-otoacoustic-emission fine structure in human newborns and adults with normal hearing. Journal of the Acoustical Society of America, 2007, 122, 2191-2202.	1.1	26
29	A longitudinal study of distortion product otoacoustic emission ipsilateral suppression and input/output characteristics in human neonates. Journal of the Acoustical Society of America, 2003, 114, 3239-3250.	1.1	24
30	Distortion product otoacoustic emission (2f1–f2) suppression in 3-month-old infants: Evidence for postnatal maturation of human cochlear function?. Journal of the Acoustical Society of America, 2004, 116, 3572-3580.	1.1	20
31	The relationship between MOC reflex and masked threshold. Hearing Research, 2011, 282, 128-137.	2.0	20
32	Ipsilateral distortion product otoacoustic emission (2 f1–f2) suppression in children with sensorineural hearing loss. Journal of the Acoustical Society of America, 2003, 114, 919-931.	1.1	19
33	Towards a joint reflection-distortion otoacoustic emission profile: Results in normal and impaired ears. Journal of the Acoustical Society of America, 2017, 142, 812-824.	1.1	19
34	DPOAE suppression tuning: Cochlear immaturity in premature neonates or auditory aging in normal-hearing adults?. Journal of the Acoustical Society of America, 2001, 110, 3155-3162.	1.1	17
35	Swept-tone stimulus-frequency otoacoustic emissions: Normative data and methodological considerations. Journal of the Acoustical Society of America, 2018, 143, 181-192.	1.1	17
36	Morphological Immaturity of the Neonatal Organ of Corti and Associated Structures in Humans. JARO - Journal of the Association for Research in Otolaryngology, 2019, 20, 461-474.	1.8	17

CAROLINA ABDALA

#	Article	IF	CITATIONS
37	Role of Neuropilin-1/Semaphorin-3A signaling in the functional and morphological integrity of the cochlea. PLoS Genetics, 2017, 13, e1007048.	3.5	16
38	Changes in the Compressive Nonlinearity of the Cochlea During Early Aging: Estimates From Distortion OAE Input/Output Functions. Ear and Hearing, 2016, 37, 603-614.	2.1	15
39	Distortion-product otoacoustic emission reflection-component delays and cochlear tuning: Estimates from across the human lifespan. Journal of the Acoustical Society of America, 2014, 135, 1950-1958.	1.1	14
40	Changes in the DP-Gram During the Preterm and Early Postnatal Period. Ear and Hearing, 2008, 29, 512-523.	2.1	13
41	Stability of the Medial Olivocochlear Reflex as Measured by Distortion Product Otoacoustic Emissions. Journal of Speech, Language, and Hearing Research, 2015, 58, 122-134.	1.6	13
42	Characterizing spontaneous otoacoustic emissions across the human lifespan. Journal of the Acoustical Society of America, 2017, 141, 1874-1886.	1.1	13
43	Stimulus-frequency otoacoustic emissions in human newborns. Journal of the Acoustical Society of America, 2015, 137, EL78-EL84.	1.1	12
44	Effects of aspirin on distortion product otoacoustic emission suppression in human adults: A comparison with neonatal data. Journal of the Acoustical Society of America, 2005, 118, 1566-1575.	1.1	11
45	Effects of Forward- and Emitted-Pressure Calibrations on the Variability of Otoacoustic Emission Measurements Across Repeated Probe Fits. Ear and Hearing, 2019, 40, 1345-1358.	2.1	8
46	Frequency shifts in distortion-product otoacoustic emissions evoked by swept tones. Journal of the Acoustical Society of America, 2016, 140, 936-944.	1.1	7
47	Deviations from Scaling Symmetry in the Apical Half of the Human Cochlea. , 2011, 1403, 483-488.		6
48	Characterizing the Relationship Between Reflection and Distortion Otoacoustic Emissions in Normal-Hearing Adults. JARO - Journal of the Association for Research in Otolaryngology, 2022, 23, 647-664.	1.8	6
49	Distortion-product otoacoustic-emission suppression tuning in human infants and adults using absorbed sound power. Journal of the Acoustical Society of America, 2011, 129, EL108-EL113.	1.1	5
50	Variable-rate frequency sweeps and their application to the measurement of otoacoustic emissions. Journal of the Acoustical Society of America, 2019, 146, 3457-3465.	1.1	5
51	Differences in distortion product otoacoustic emission phase recorded from human neonates using two popular probes. Journal of the Acoustical Society of America, 2010, 128, EL49-EL55.	1.1	4
52	Swept-Tone Stimulus-Frequency Otoacoustic Emissions in Human Newborns. Trends in Hearing, 2019, 23, 233121651988922.	1.3	4
53	A cochlea with three parts? Evidence from otoacoustic emission phase in humans. Journal of the Acoustical Society of America, 2020, 148, 1585-1601.	1.1	4
54	Weakened Cochlear Nonlinearity During Human Aging and Perceptual Correlates. Ear and Hearing, 2021, 42, 832-845.	2.1	4

#	Article	IF	CITATIONS
55	Exploiting dual otoacoustic emission sources. AlP Conference Proceedings, 2015, 1703, .	0.4	2
56	Probing apical-basal differences in the human cochlea using distortion-product otoacoustic emission phase. AIP Conference Proceedings, 2018, 1965, .	0.4	2
57	Extended low-frequency phase of the distortion-product otoacoustic emission in human newborns. JASA Express Letters, 2021, 1, 014404.	1.1	2