
Susana M. Olhero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3003161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flexural strength of 3Y-TZP bioceramics obtained by direct write assembly as function of residual connected-porosity. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126, 105035.	1.5	7
2	Bone: An Outstanding Composite Material. Applied Sciences (Switzerland), 2022, 12, 3381.	1.3	14
3	Reactive Sintering of Al2O3–Y3Al5O12 Ceramic Composites Obtained by Direct Ink Writing. Ceramics, 2022, 5, 1-12.	1.0	3
4	Structural Performance of Dense Alumina-Zirconia Ceramics: An Overview of Conventional versus Additive Manufacturing. , 2022, 8, .		0
5	Microstructural Modelling of the Thermoelastic Properties of Dense ZTA Ceramics. , 2022, 8, .		0
6	Effective production of multifunctional magnetic-sensitive biomaterial by an extrusion-based additive manufacturing technique. Biomedical Materials (Bristol), 2021, 16, 015011.	1.7	10
7	Direct ink writing of macroporous leadâ€free piezoelectric Ba _{0.85} Ca _{0.15} Zr _{0.1} Ti _{0.9} O ₃ . Journal of the American Ceramic Society, 2019, 102, 3191-3203.	1.9	29
8	Novel sintering-free scaffolds obtained by additive manufacturing for concurrent bone regeneration and drug delivery: Proof of concept. Materials Science and Engineering C, 2019, 94, 426-436.	3.8	35
9	Biocompatibility and antimicrobial activity of biphasic calcium phosphate powders doped with metal ions for regenerative medicine. Ceramics International, 2017, 43, 15719-15728.	2.3	61
10	Additive manufacturing of 3D porous alkali-free bioactive glass scaffolds for healthcare applications. Journal of Materials Science, 2017, 52, 12079-12088.	1.7	21
11	Biphasic calcium phosphate scaffolds fabricated by direct write assembly: Mechanical, anti-microbial and osteoblastic properties. Journal of the European Ceramic Society, 2017, 37, 359-368.	2.8	72
12	Thermo-mechanical and high-temperature dielectric properties of cordierite-mullite-alumina ceramics. Ceramics International, 2016, 42, 16897-16905.	2.3	38
13	A novel approach to prepare aluminium-alloy foams reinforced by carbon-nanotubes. Materials Letters, 2015, 160, 162-166.	1.3	56
14	Preventing hydrolysis of BaTiO3 powders during aqueous processing and of bulk ceramics after sintering. Journal of the European Ceramic Society, 2015, 35, 2471-2478.	2.8	4
15	An effective approach to reinforced closed-cell Al-alloy foams with multiwalled carbon nanotubes. Carbon, 2015, 95, 589-600.	5.4	53
16	Fabrication of Barium Strontium Titanate (<scp><scp>Ba</scp></scp> 3D Microcomponents from Aqueous Suspensions. Journal of the American Ceramic Society, 2014, 97, 725-732.	<sul< td=""><td>0>3) 17</td></sul<>	0>3) 17
17	Is the ubiquitous presence of barium carbonate responsible for the poor aqueous processing ability of barium titanate?. Journal of the European Ceramic Society, 2013, 33, 2509-2517.	2.8	17

18Lead-free 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 powder surface treated against hydrolysis – a key for
a successful aqueous processing. Journal of Materials Chemistry C, 2013, 1, 4846.2.720

Susana M. Olhero

#	Article	IF	CITATIONS
19	Hydrolysis Control of AlN Powders for the Aqueous Processing of Spherical AlN Granules. Journal of the American Ceramic Society, 2013, 96, 1383-1389.	1.9	20
20	Application of gel-casting to the fabrication of 1–3 piezoelectric ceramic–polymer composites for high-frequency ultrasound devices. Journal of Micromechanics and Microengineering, 2012, 22, 125001.	1.5	19
21	Modeling the mechanical properties of optimally processed cordierite–mullite–alumina ceramic foams by X-ray computed tomography and finite element analysis. Acta Materialia, 2012, 60, 4235-4246.	3.8	32
22	Innovative fabrication of PZT pillar arrays by a colloidal approach. Journal of the European Ceramic Society, 2012, 32, 1067-1075.	2.8	34
23	Co-precipitation of a Ni–Zn ferrite precursor powder: Effects of heat treatment conditions and deagglomeration on the structure and magnetic properties. Journal of the European Ceramic Society, 2012, 32, 2469-2476.	2.8	32
24	Hydrolysis-Induced Aqueous Gelcasting of Magnesium Aluminate Spinel. International Journal of Applied Ceramic Technology, 2011, 8, 873-884.	1.1	8
25	Influence of chemical composition on sintering ability of ZTA ceramics consolidated from freeze dried granules. Ceramics International, 2011, 37, 835-841.	2.3	11
26	Synthesis, mechanical and biological characterization of ionic doped carbonated hydroxyapatite/β-tricalcium phosphate mixtures. Acta Biomaterialia, 2011, 7, 1835-1843.	4.1	87
27	Influence of processing route on microstructure and mechanical properties of MgAl2O4 spinel. Ceramics International, 2010, 36, 473-482.	2.3	58
28	A novel colloidal processing route to alumina ceramics. Ceramics International, 2010, 36, 1357-1364.	2.3	33
29	Effect of Aging Time on the Stability of Aqueous Yâ€Î±â€SiAlON Precursor Powder Suspensions. Journal of the American Ceramic Society, 2010, 93, 1608-1613.	1.9	Ο
30	Aqueous Colloidal Processing of ZTA Composites. Journal of the American Ceramic Society, 2009, 92, 9-16.	1.9	57
31	Gelcasting of Magnesium Aluminate Spinel Powder. Journal of the American Ceramic Society, 2009, 92, 350-357.	1.9	35
32	Incorporation of wastes from granite rock cutting and polishing industries to produce roof tiles. Journal of the European Ceramic Society, 2009, 29, 23-30.	2.8	130
33	Hydrolysis-induced aqueous gelcasting for near-net shape forming of ZTA ceramic composites. Journal of the European Ceramic Society, 2009, 29, 1393-1401.	2.8	39
34	Influence of setting liquid composition and liquid-to-powder ratio on properties of a Mg-substituted calcium phosphate cement. Acta Biomaterialia, 2009, 5, 1233-1240.	4.1	60
35	Phosphoric acid treated AlN powder for aqueous processing of net-shape dense AlN and <i>β</i> -SiAlON parts. Advances in Applied Ceramics, 2009, 108, 111-117.	0.6	13
36	Biotoxicity study of bone cement based on a functionalised multi-walled carbon nanotube-reinforced PMMA/HAp nanocomposite. International Journal of Nano and Biomaterials, 2009, 2, 442.	0.1	5

Susana M. Olhero

#	Article	IF	CITATIONS
37	A non-aqueous processing route for phosphate-protection of AlN powder against hydrolysis. Journal of the European Ceramic Society, 2008, 28, 2281-2288.	2.8	24
38	Surface Passivation of MgAl ₂ O ₄ Spinel Powder by Chemisorbing H ₃ PO ₄ for Easy Aqueous Processing. Langmuir, 2008, 24, 9525-9530.	1.6	42
39	Formation and Densification Behavior of MgAl ₂ O ₄ Spinel: The Influence of Processing Parameters. Journal of the American Ceramic Society, 2008, 91, 1905-1911.	1.9	35
40	Chemisorption of Phosphoric Acid and Surface Characterization of As Passivated AlN Powder Against Hydrolysis. Langmuir, 2008, 24, 5359-5365.	1.6	27
41	Influence of processing route and SiO ₂ on sintering ability, CTE, and dielectric constant of β-Si ₄ Al ₂ O ₂ N ₆ . Journal of Materials Research, 2008, 23, 2305-2311.	1.2	5
42	Thermodynamic Studies on the AlN Sintering Powders Treated With Phosphate Species. Journal of the American Ceramic Society, 2007, 90, 3589-3595.	1.9	6
43	AlN ceramics processed by aqueous slip casting. Journal of Materials Research, 2006, 21, 2460-2469.	1.2	16
44	Effect of sodium hexametaphosphate and ageing on the rheological behaviour of kaolin dispersions. Applied Clay Science, 2006, 31, 56-64.	2.6	54
45	Influence of the de-waxing atmosphere on the properties of AIN ceramics processed from aqueous media. Journal of the European Ceramic Society, 2006, 26, 2475-2483.	2.8	16
46	Rheological characterisation of water-based AlN slurries for the tape casting process. Journal of Materials Processing Technology, 2005, 169, 206-213.	3.1	24
47	A Thermo-Chemical Surface Treatment of AlN Powder for the Aqueous Processing of AlN Ceramics. Journal of Materials Research, 2004, 19, 746-751.	1.2	40
48	Influence of particle size distribution on rheology and particle packing of silica-based suspensions. Powder Technology, 2004, 139, 69-75.	2.1	173
49	Rheological properties of paraffin suspensions of surface-modified alumina powder for low-pressure injection moulding. Rheologica Acta, 2004, 43, 559-566.	1.1	17
50	Controlling hydrolysis and dispersion of AlN powders in aqueous media. Journal of Colloid and Interface Science, 2003, 261, 456-463.	5.0	75
51	Influence of shear intensity during slip preparation on rheological characteristics of calcium carbonate suspensions. Ceramics International, 2003, 29, 365-370.	2.3	4
52	Influence of temperature on the colloidal processing of electrostatically stabilised alumina suspensions. Journal of Materials Processing Technology, 2003, 137, 102-109.	3.1	10
53	Title is missing!. Journal of Materials Synthesis and Processing, 2002, 10, 311-318.	0.3	30
54	Al-rich sludge treatments towards recycling. Journal of the European Ceramic Society, 2002, 22, 2243-2249.	2.8	29

SUSANA M. OLHERO

#	Article	IF	CITATIONS
55	Particle segregation phenomena occurring during the slip casting process. Ceramics International, 2002, 28, 377-386.	2.3	21
56	Feedstock Formulations for Direct Consolidation of Porcelains with Polysaccharides. Journal of the American Ceramic Society, 2001, 84, 719-725.	1.9	24
57	Influence of Temperature on Stability of Electrostatically Stabilized Alumina Suspensions. Journal of Colloid and Interface Science, 2000, 231, 221-227.	5.0	35
58	Synergy of polysaccharide mixtures in gelcasting of alumina. Journal of the European Ceramic Society, 2000, 20, 423-429.	2.8	66
59	Multifunctional Sintering-Free Composite Scaffolds Developed by Additive Manufacturing. , 0, , .		0
60	Si3N4 Parts Fabricated by Robocasting: Proof of Concept. , 0, , .		0