Ning Chen

List of Publications by Citations

Source: https://exaly.com/author-pdf/3003039/ning-chen-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

114
papers5,831
citations32
h-index75
g-index119
ext. papers7,483
ext. citations9.4
avg, IF5.86
L-index

#	Paper	IF	Citations
114	Homogeneously dispersed multimetal oxygen-evolving catalysts. <i>Science</i> , 2016 , 352, 333-7	33.3	1459
113	Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition. <i>Scientific Reports</i> , 2013 , 3,	4.9	589
112	Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction. <i>Journal of the American Chemical Society</i> , 2018 , 140, 3876-3879	16.4	560
111	Graphene Defects Trap Atomic Ni Species for Hydrogen and Oxygen Evolution Reactions. <i>CheM</i> , 2018 , 4, 285-297	16.2	436
110	Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. <i>Nature Communications</i> , 2019 , 10, 4936	17.4	186
109	A Promoted Charge Separation/Transfer System from Cu Single Atoms and C N Layers for Efficient Photocatalysis. <i>Advanced Materials</i> , 2020 , 32, e2003082	24	144
108	Removal of hexavalent chromium in aqueous solutions using biochar: Chemical and spectroscopic investigations. <i>Science of the Total Environment</i> , 2018 , 625, 1567-1573	10.2	139
107	Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 16427-16432	16.4	113
106	Catalytic oxidation of toluene by ozone over alumina supported manganese oxides: Effect of catalyst loading. <i>Applied Catalysis B: Environmental</i> , 2013 , 136-137, 239-247	21.8	91
105	Structural Evolution and Redox Processes Involved in the Electrochemical Cycling of P2Na0.67[Mn0.66Fe0.20Cu0.14]O2. <i>Chemistry of Materials</i> , 2017 , 29, 6684-6697	9.6	84
104	Facile synthesis of highly efficient ZnO/ZnFe2O4 photocatalyst using earth-abundant sphalerite and its visible light photocatalytic activity. <i>Applied Catalysis B: Environmental</i> , 2018 , 226, 324-336	21.8	83
103	Ultra-long life rechargeable zinc-air battery based on high-performance trimetallic nitride and NCNT hybrid bifunctional electrocatalysts. <i>Nano Energy</i> , 2019 , 61, 86-95	17.1	82
102	Effects of Si/Al ratio and Pt loading on Pt/SAPO-11 catalysts in hydroconversion of Jatropha oil. <i>Applied Catalysis A: General</i> , 2013 , 466, 105-115	5.1	81
101	Effect of reduction temperature of NiMoO3-x/SAPO-11 on its catalytic activity in hydrodeoxygenation of methyl laurate. <i>Applied Catalysis B: Environmental</i> , 2015 , 174-175, 253-263	21.8	68
100	Photoelectric conversion on Earth's surface via widespread Fe- and Mn-mineral coatings. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9741-9746	11.5	62
99	Rates and mechanisms of Zn2+ adsorption on a meat and bonemeal biochar. <i>Environmental Science & Environmental & Envir</i>	10.3	62
98	Thermodynamic Analysis of Nickel(II) and Zinc(II) Adsorption to Biochar. <i>Environmental Science & Environmental Science</i>	10.3	58

97	Solution-Phase Structure and Bonding of Au38(SR)24 Nanoclusters from X-ray Absorption Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 65-69	3.8	53
96	Li10Ge(P1⊠Sbx)2S12 Lithium-lon Conductors with Enhanced Atmospheric Stability. <i>Chemistry of Materials</i> , 2020 , 32, 2664-2672	9.6	50
95	Generating Oxygen Vacancies in MnO Hexagonal Sheets for Ultralong Life Lithium Storage with High Capacity. <i>ACS Nano</i> , 2019 , 13, 2062-2071	16.7	47
94	Elucidation of the active phase in PtSn/SAPO-11 for hydrodeoxygenation of methyl palmitate. <i>Journal of Catalysis</i> , 2016 , 334, 79-88	7-3	44
93	Effect of noble metals on activity of MnOx/Eblumina catalyst in catalytic ozonation of toluene. <i>Chemical Engineering Journal</i> , 2013 , 214, 219-228	14.7	43
92	Litchi-like porous Fe/N/C spheres with atomically dispersed FeNx promoted by sulfur as highly efficient oxygen electrocatalysts for ZnBir batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 4605-461	\mathfrak{d}^3	43
91	A self-supported electrode as a high-performance binder- and carbon-free cathode for rechargeable hybrid zinc batteries. <i>Energy Storage Materials</i> , 2020 , 24, 272-280	19.4	41
90	Mechanisms of the Removal of U(VI) from Aqueous Solution Using Biochar: A Combined Spectroscopic and Modeling Approach. <i>Environmental Science & Environmental Science & Envir</i>	,10.3	41
89	Scalable and controllable synthesis of atomic metal electrocatalysts assisted by an egg-box in alginate. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 18417-18425	13	38
88	Self-Reconstruction of Co/Co2P Heterojunctions Confined in N-Doped Carbon Nanotubes for ZincAir Flow Batteries. <i>ACS Energy Letters</i> ,1153-1161	20.1	37
87	Origin of Superionic LiYInCl Halide Solid Electrolytes with High Humidity Tolerance. <i>Nano Letters</i> , 2020 , 20, 4384-4392	11.5	35
86	Effect of surface modification with silica on the structure and activity of Pt/ZSM-22@SiO2 catalysts in hydrodeoxygenation of methyl palmitate. <i>Journal of Catalysis</i> , 2017 , 345, 124-134	7.3	34
85	Retention and chemical speciation of uranium in an oxidized wetland sediment from the Savannah River Site. <i>Journal of Environmental Radioactivity</i> , 2014 , 131, 40-6	2.4	34
84	Spectroscopic evidence of uranium immobilization in acidic wetlands by natural organic matter and plant roots. <i>Environmental Science & Environmental </i>	10.3	33
83	Reservoirs of Selenium in Coal Waste Rock: Elk Valley, British Columbia, Canada. <i>Environmental Science & Environmental Scienc</i>	10.3	32
82	Size-Mediated Recurring Spinel Sub-nanodomains in Li- and Mn-Rich Layered Cathode Materials. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14313-14320	16.4	32
81	Atomic Layer Deposited Non-Noble Metal Oxide Catalyst for Sodium Air Batteries: Tuning the Morphologies and Compositions of Discharge Product. <i>Advanced Functional Materials</i> , 2017 , 27, 160666	2 15.6	30
80	Structural disorder controlled oxygen vacancy and photocatalytic activity of spinel-type minerals: A case study of ZnFe2O4. <i>Chemical Geology</i> , 2019 , 504, 276-287	4.2	30

79	Extended X-ray Absorption Fine Structure and Density Functional Theory Studies on the Complexation Mechanism of Amidoximate Ligand to Uranyl Carbonate. <i>Industrial & Description Chemistry Research</i> , 2016 , 55, 4224-4230	3.9	29
78	Tissue-specific accumulation and speciation of selenium in rainbow trout (Oncorhynchus mykiss) exposed to elevated dietary selenomethionine. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2012 , 155, 560-5	3.2	29
77	Ultrafast Time-Resolved X-ray Absorption Spectroscopy of Ferrioxalate Photolysis with a Laser Plasma X-ray Source and Microcalorimeter Array. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 1099-11	044	28
76	Arsenic speciation in synthetic gypsum (CaSO4型H2O): A synchrotron XAS, single-crystal EPR, and pulsed ENDOR study. <i>Geochimica Et Cosmochimica Acta</i> , 2013 , 106, 524-540	5.5	28
75	Formation and Immobilization of Cr(VI) Species in Long-Term Tannery Waste Contaminated Soils. <i>Environmental Science & Environmental Science & Environ</i>	10.3	27
74	PGM-Free Fe/N/C and Ultralow Loading Pt/C Hybrid Cathode Catalysts with Enhanced Stability and Activity in PEM Fuel Cells. <i>ACS Applied Materials & Description</i> (12, 13739-13749)	9.5	27
73	Pressure-driven catalyst synthesis of Co-doped Fe3C@Carbon nano-onions for efficient oxygen evolution reaction. <i>Applied Catalysis B: Environmental</i> , 2020 , 268, 118385	21.8	27
7 ²	Cobalt (II) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra-stable rechargeable Zn-air flow battery. <i>Nano Energy</i> , 2021 , 79, 105409	17.1	27
71	Li-ion storage dynamics in metastable nanostructured Li2FeSiO4 cathode: Antisite-induced phase transition and lattice oxygen participation. <i>Journal of Power Sources</i> , 2016 , 329, 355-363	8.9	24
70	Arsenic incorporation in synthetic struvite (NH4MgPO4E6H2O): a synchrotron XAS and single-crystal EPR study. <i>Environmental Science & EPR study</i> . 2013, 47, 12728-35	10.3	24
69	Uranium association with iron-bearing phases in mill tailings from Gunnar, Canada. <i>Environmental Science & Environmental Scie</i>	10.3	20
68	Beyond Platinum: Defects Abundant CoP3/Ni2P Heterostructure for Hydrogen Evolution Electrocatalysis. <i>Small Science</i> , 2021 , 1, 2000027		20
67	Molten salt-assisted synthesis of bulk CoOOH as a water oxidation catalyst. <i>Journal of Energy Chemistry</i> , 2020 , 42, 5-10	12	20
66	Geochemical characteristics of oil sands fluid petroleum coke. <i>Applied Geochemistry</i> , 2017 , 76, 148-158	3.5	19
65	Role of Surface Carboxylates in the Gas Phase Ozone-Assisted Catalytic Oxidation of Toluene. <i>Catalysis Letters</i> , 2017 , 147, 2421-2433	2.8	19
64	Characterizing Zinc Speciation in Soils from a Smelter-Affected Boreal Forest Ecosystem. <i>Journal of Environmental Quality</i> , 2016 , 45, 684-92	3.4	19
63	Micro-nanostructured BiO with surface oxygen vacancies as superior adsorbents for SeO ions. Journal of Hazardous Materials, 2018 , 360, 279-287	12.8	18
62	A general strategy for preparing pyrrolic-N type single-atom catalysts via pre-located isolated atoms. <i>Nature Communications</i> , 2021 , 12, 6806	17.4	18

(2019-2020)

61	Pressure-promoted irregular CoMoP2 nanoparticles activated by surface reconstruction for oxygen evolution reaction electrocatalysts. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 2001-2007	13	18
60	Low Temperature Catalytic Oxidation of Binary Mixture of Toluene and Acetone in the Presence of Ozone. <i>Catalysis Letters</i> , 2018 , 148, 3431-3444	2.8	17
59	Insight into cathode surface to boost the performance of solid-state batteries. <i>Energy Storage Materials</i> , 2021 , 35, 661-668	19.4	16
58	NiMo nitride supported on FAl2O3 for hydrodeoxygenation of oleic acid: Novel characterization and activity study. <i>Catalysis Today</i> , 2017 , 291, 153-159	5.3	14
57	Spontaneous reaction between an uncharged lithium iron silicate cathode and a LiPF6-based electrolyte. <i>Chemical Communications</i> , 2016 , 52, 190-3	5.8	14
56	Synthesis and crystal structure of a new open-framework iron phosphate (NH4)4Fe3(OH)2F2[H3(PO4)4]: Novel linear trimer of corner-sharing Fe(III) octahedra. <i>Journal of Solid State Chemistry</i> , 2010 , 183, 2763-2769	3.3	14
55	Electron paramagnetic resonance spectroscopic study of synthetic fluorapatite: Part I. Local structural environment and substitution mechanism of Gd3+ at the Ca2 site. <i>American Mineralogist</i> , 2002 , 87, 37-46	2.9	14
54	Reusable magnetite nanoparticles-biochar composites for the efficient removal of chromate from water. <i>Scientific Reports</i> , 2020 , 10, 19007	4.9	14
53	Influence of heavy metal sorption pathway on the structure of biogenic birnessite: Insight from the band structure and photostability. <i>Geochimica Et Cosmochimica Acta</i> , 2019 , 256, 116-134	5.5	14
52	Uptake and speciation of uranium in synthetic gypsum (CaSOIHO): Applications to radioactive mine tailings. <i>Journal of Environmental Radioactivity</i> , 2018 , 181, 8-17	2.4	13
51	Sequestration of Selenite and Selenate in Gypsum (CaSOPHO): Insights from the Single-Crystal Electron Paramagnetic Resonance Spectroscopy and Synchrotron X-ray Absorption Spectroscopy Study. <i>Environmental Science & Emp; Technology</i> , 2020 , 54, 3169-3180	10.3	12
50	The effect of Ni on the kinetics of electroless Cu film deposition. <i>Thin Solid Films</i> , 2017 , 626, 131-139	2.2	11
49	Iron pairs in beryl: New insights from electron paramagnetic resonance, synchrotron X-ray absorption spectroscopy, and ab initio calculations. <i>American Mineralogist</i> , 2013 , 98, 1745-1753	2.9	11
48	Novel Superstructure-Phase Two-Dimensional Material 1-VSe at High Pressure. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 380-386	6.4	11
47	Cobalt-Phthalocyanine-Derived Molecular Isolation Layer for Highly Stable Lithium Anode. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 19852-19859	16.4	11
46	Origin of hetero-nuclear Au-Co dual atoms for efficient acidic oxygen reduction. <i>Applied Catalysis B: Environmental</i> , 2021 , 301, 120782	21.8	11
45	Cu(II) sorption by biogenic birnessite produced by Pseudomonas putida strain MnB1: structural differences from abiotic birnessite and its environmental implications. <i>CrystEngComm</i> , 2018 , 20, 1361-13	374	10
44	Rational synthesis of CaCo2O4 nanoplate as an earth-abundant electrocatalyst for oxygen evolution reaction. <i>Journal of Energy Chemistry</i> , 2019 , 31, 125-131	12	10

43	Linker-Compensated Metal-Organic Framework with Electron Delocalized Metal Sites for Bifunctional Oxygen Electrocatalysis <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	10
42	Iodine speciation in a silver-amended cementitious system. <i>Environment International</i> , 2019 , 126, 576-58	8 4 2.9	9
41	Electron paramagnetic resonance spectroscopic study of synthetic fluorapatite: Part II. Gd3+ at the Ca1 site, with a neighboring Ca2 vacancy. <i>American Mineralogist</i> , 2002 , 87, 47-55	2.9	9
40	FCC tantalum thin films deposited by magnetron sputtering. <i>Surface and Coatings Technology</i> , 2019 , 358, 942-946	4.4	9
39	Arsenic speciation in newberyite (MgHPO(4)BH(2)O) determined by synchrotron X-ray absorption and electron paramagnetic resonance spectroscopies: implications for the fate of arsenic in green fertilizers. <i>Environmental Science & Environmental Sci</i>	10.3	8
38	X-ray induced synthesis of a novel material: Stable, doped solid CO at ambient conditions. <i>Chemical Physics Letters</i> , 2017 , 686, 183-188	2.5	8
37	Iron-regulated NiPS for enhanced oxygen evolution efficiency. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 23580-23589	13	8
36	Uranium-Induced Changes in Crystal-Field and Covalency Effects of Th in ThU O Mixed Oxides Probed by High-Resolution X-ray Absorption Spectroscopy. <i>Inorganic Chemistry</i> , 2018 , 57, 11404-11413	5.1	7
35	Non-Henry Law behavior of REE partitioning between fluorapatite and CaF2-rich melts: Controls of intrinsic vacancies and implications for natural apatites. <i>Geochimica Et Cosmochimica Acta</i> , 2003 , 67, 1889-1900	5.5	7
34	Highly stable halide electrolyte-based all-solid-state Li-Se batteries Advanced Materials, 2022, e220085	6 4	7
33	Fingerprint Feature of Atomic Intermixing in Supported AuPd Nanocatalysts Probed by X-ray Absorption Fine Structure. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 28385-28394	3.8	6
32	Molecular Interaction of Aqueous Iodine Species with Humic Acid Studied by I and C K-Edge X-ray Absorption Spectroscopy. <i>Environmental Science & Environmental Science & Envi</i>	10.3	5
31	Room temperature oxidation of acetone by ozone over alumina-supported manganese and cobalt mixed oxides. <i>Frontiers of Chemical Science and Engineering</i> , 2020 , 14, 937-947	4.5	5
30	Diamond nucleation and growth on WC-Co inserts with Cr 2 O 3 -Cr interlayer. <i>Surface and Coatings Technology</i> , 2018 , 340, 190-198	4.4	5
29	Local structure investigation of Ga and Yb dopants in Co4Sb12 skutterudites. <i>Physical Review B</i> , 2017 , 96,	3.3	5
28	Pressure-driven suppression of the Jahn-Teller effects and structural changes in cupric oxide. Journal of Physics Condensed Matter, 2016 , 28, 025401	1.8	5
27	Uranyl binding mechanism in microcrystalline silicas: A potential missing link for uranium mineralization by direct uranyl co-precipitation and environmental implications. <i>Geochimica Et Cosmochimica Acta</i> , 2021 , 292, 518-531	5.5	5
26	Highly active g-C3N4 photocatalysts modified with transition metal cobalt for hydrogen evolution. Journal of Materials Chemistry C, 2021 , 9, 4378-4384	7.1	5

25	A Series of Ternary Metal Chloride Superionic Conductors for High-Performance All-Solid-State Lithium Batteries. <i>Advanced Energy Materials</i> ,2103921	21.8	5
24	Mechanism of Gd3+ uptake in gypsum (CaSO4½H2O): Implications for EPR dating, REE recovery and REE behavior. <i>Geochimica Et Cosmochimica Acta</i> , 2019 , 258, 63-78	5.5	4
23	Revealing Dopant Local Structure of Se-Doped Black Phosphorus. <i>Chemistry of Materials</i> , 2021 , 33, 2029	€ 636	4
22	Square-pyramidal Fe-N4 with defect-modulated O-coordination: Two-tier electronic structure fine-tuning for enhanced oxygen reduction. <i>Chem Catalysis</i> , 2022 ,		4
21	Deciphering the Dynamic Structure Evolution of Fe- and Ni-Codoped CoS2 for Enhanced Water Oxidation. <i>ACS Catalysis</i> , 2022 , 12, 3743-3751	13.1	4
20	Atomically Dispersed Fe-Co Bimetallic Catalysts for the Promoted Electroreduction of Carbon Dioxide. <i>Nano-Micro Letters</i> , 2021 , 14, 25	19.5	4
19	Oxygen atom release during selenium oxyanion adsorption on goethite and hematite. <i>Applied Geochemistry</i> , 2020 , 117, 104605	3.5	3
18	Arsenic speciation in danburite (CaB2Si2O8): a synchrotron XAS and single-crystal EPR study. <i>European Journal of Mineralogy</i> , 2014 , 26, 113-125	2.2	3
17	Effects of Dolomitic Limestone Application on Zinc Speciation in Boreal Forest Smelter-Contaminated Soils. <i>Journal of Environmental Quality</i> , 2016 , 45, 1894-1900	3.4	3
16	Spectroscopic and Modeling Investigation of Sorption of Pb(II) to ZSM-5 Zeolites. <i>ACS ES&T Water</i> , 2021 , 1, 108-116		3
15	Enhancing Catalytic Ozonation of Acetone and Toluene in Air Using MnOx/Al2O3 Catalysts at Room Temperature. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 12252-12264	3.9	3
14	Single-step Hydroconversion of Jatropha Oil to High Quality Fuel Oil over Reduced Nickel-Molybdenum Catalysts. <i>Journal of the Japan Petroleum Institute</i> , 2013 , 56, 249-252	1	2
13	Cu Electrodeposition on Nanostructured MoS2 and WS2 and Implications for HER Active Site Determination. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 116517	3.9	2
12	XAS characterization of nano-chromite particles precipitated on magnetite-biochar composites. <i>Radiation Physics and Chemistry</i> , 2020 , 175, 108544	2.5	2
11	Photo-stimulated anoxic reduction of birnessite (EMnO2) by citrate and its fine structural responses: Insights on a proton-promoted photoelectron transfer process. <i>Chemical Geology</i> , 2021 , 561, 120029	4.2	2
10	In Operando XANES & XRD Investigation into the Rate-Dependent Transport Properties of Lithium Iron Silicate Cathodes. <i>MRS Advances</i> , 2017 , 2, 419-424	0.7	1
9	Elucidating the reaction pathway of crystalline multi-metal borides for highly efficient oxygen-evolving electrocatalysts. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 1569-1578	13	1
8	Interaction between filler species in double-filled skutterudites. <i>Physical Review Materials</i> , 2018 , 2,	3.2	1

7	Molecular Structure of Molybdate Adsorption on Goethite at pH 58: A Combined DFT + U, EXAFS, and Ab Initio XANES Study. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 22052-22063	3.8	1
6	Lead (Pb) sorption to hydrophobic and hydrophilic zeolites in the presence and absence of MTBE. <i>Journal of Hazardous Materials</i> , 2021 , 420, 126528	12.8	1
5	Non-Noble-Metal Catalyst of Cu/g-C3N4 for Efficient Photocatalytic Hydrogen Evolution. <i>ACS Applied Energy Materials</i> , 2021 , 4, 13796-13802	6.1	1
4	A Multidimensional Topotactic Host Composite Anode Toward Transparent Flexible Potassium-Ion Microcapacitors <i>ACS Applied Materials & Discrete States</i> , 2021,	9.5	1
3	Anharmonicity in partially filled skutterudites YbxCo4Sb12. <i>Journal of Applied Physics</i> , 2021 , 130, 18510	5 2.5	О
2	Highly Active Sites in Quaternary LnPdAsO (Ln = La, Ce, Pr) with Excellent Catalytic Activity for Hydrogen Evolution Reaction. <i>ACS Applied Energy Materials</i> , 2021 , 4, 4302-4307	6.1	O
1	Competing Sorption of Se(IV) and Se(VI) on Schwertmannite. <i>Minerals (Basel, Switzerland</i>), 2021 , 11, 764	12.4	О