Xuetong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3002724/publications.pdf Version: 2024-02-01

XUETONC ZHANC

#	Article	IF	CITATIONS
1	Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. Journal of Materials Chemistry, 2011, 21, 6494.	6.7	915
2	What is the choice for supercapacitors: graphene or graphene oxide?. Energy and Environmental Science, 2011, 4, 2826.	15.6	666
3	Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. Journal of Materials Chemistry, 2012, 22, 8767.	6.7	517
4	Controllable Synthesis of Conducting Polypyrrole Nanostructures. Journal of Physical Chemistry B, 2006, 110, 1158-1165.	1.2	390
5	Multifunctional Aramid Nanofiber/Carbon Nanotube Hybrid Aerogel Films. ACS Nano, 2020, 14, 688-697.	7.3	298
6	Multiresponsive Grapheneâ€Aerogelâ€Directed Phaseâ€Change Smart Fibers. Advanced Materials, 2018, 30, e1801754.	11.1	272
7	Nanofibrous Kevlar Aerogel Threads for Thermal Insulation in Harsh Environments. ACS Nano, 2019, 13, 5703-5711.	7.3	271
8	Easy and green synthesis of reduced graphite oxide-based hydrogels. Carbon, 2011, 49, 4314-4321.	5.4	247
9	Edgeâ€ŧoâ€Edge Assembled Graphene Oxide Aerogels with Outstanding Mechanical Performance and Superhigh Chemical Activity. Small, 2013, 9, 1397-1404.	5.2	182
10	From anisotropic graphene aerogels to electron- and photo-driven phase change composites. Journal of Materials Chemistry A, 2016, 4, 17042-17049.	5.2	179
11	Nanoporous Boron Nitride Aerogel Film and Its Smart Composite with Phase Change Materials. ACS Nano, 2020, 14, 16590-16599.	7.3	178
12	Polypyrrole/Silver Coaxial Nanowire Aero-Sponges for Temperature-Independent Stress Sensing and Stress-Triggered Joule Heating. ACS Nano, 2015, 9, 4244-4251.	7.3	175
13	Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nature Communications, 2022, 13, 1227.	5.8	168
14	Inorganic/organic mesostructure directed synthesis of wire/ribbon-like polypyrrole nanostructuresElectronic supplementary information (ESI) available: FT-IR spectra, powder XRD pattern and conductivities of as-made PPy nanostructures. See http://www.rsc.org/suppdata/cc/b4/b405255b/ Chemical Communications, 2004 1852	2.2	150
15	3D porous and redox-active prussian blue-in-graphene aerogels for highly efficient electrochemical detection of H2O2. Journal of Materials Chemistry, 2012, 22, 22090.	6.7	143
16	Synthesis and electrical properties of carbon nanotube polyaniline composites. Applied Physics Letters, 2004, 85, 1796-1798.	1.5	142
17	Elastic, Conductive, Polymeric Hydrogels and Sponges. Scientific Reports, 2014, 4, 5792.	1.6	139
18	Nanofibrous Kevlar Aerogel Films and Their Phase-Change Composites for Highly Efficient Infrared Stealth. ACS Nano, 2019, 13, 2236-2245.	7.3	136

#	Article	IF	CITATIONS
19	Self-crosslinked polyaniline hydrogel electrodes for electrochemical energy storage. Carbon, 2015, 92, 133-141.	5.4	134
20	Surfactant-Directed Polypyrrole/CNT Nanocables: Synthesis, Characterization, and Enhanced Electrical Properties. ChemPhysChem, 2004, 5, 998-1002.	1.0	130
21	Self-floating hybrid hydrogels assembled with conducting polymer hollow spheres and silica aerogel microparticles for solar steam generation. Journal of Materials Chemistry A, 2019, 7, 1244-1251.	5.2	129
22	Bifunctional Graphene/ <i>γ</i> â€Fe ₂ O ₃ Hybrid Aerogels with Double Nanocrystalline Networks for Enzyme Immobilization. Small, 2013, 9, 2331-2340.	5.2	121
23	Alkali-treated graphene oxide as a solid base catalyst: synthesis and electrochemical capacitance of graphene/carbon composite aerogels. Journal of Materials Chemistry, 2011, 21, 18537.	6.7	114
24	Conducting polymer aerogels from supercritical CO2 drying PEDOT-PSS hydrogels. Journal of Materials Chemistry, 2010, 20, 5080.	6.7	109
25	Polyimide Aerogel Fibers with Superior Flame Resistance, Strength, Hydrophobicity, and Flexibility Made via a Universal Sol–Gel Confined Transition Strategy. ACS Nano, 2021, 15, 4759-4768.	7.3	108
26	Boron Nitride Aerogels with Superâ€Flexibility Ranging from Liquid Nitrogen Temperature to 1000 °C. Advanced Functional Materials, 2019, 29, 1900188.	7.8	97
27	Spontaneous assembly of strong and conductive graphene/polypyrrole hybrid aerogels for energy storage. Nanoscale, 2014, 6, 12912-12920.	2.8	93
28	Reduced-graphene-oxide/metal-oxide p-n heterojunction aerogels as efficient 3D sensing frameworks for phenol detection. Carbon, 2016, 99, 571-578.	5.4	93
29	Reaction-Spun Transparent Silica Aerogel Fibers. ACS Nano, 2020, 14, 11919-11928.	7.3	90
30	Hierarchical Hydrogen Bonds Directed Multiâ€Functional Carbon Nanotubeâ€Based Supramolecular Hydrogels. Small, 2014, 10, 1387-1393.	5.2	85
31	Aligned/Unaligned Conducting Polymer Cryogels with Three-Dimensional Macroporous Architectures from Ice-Segregation-Induced Self-Assembly of PEDOT-PSS. Langmuir, 2011, 27, 1915-1923.	1.6	83
32	Ultralight conducting polymer/carbon nanotube composite aerogels. Carbon, 2011, 49, 1884-1893.	5.4	81
33	Glucono-δ-lactone controlled assembly of graphene oxide hydrogels with selectively reversible gel–sol transition. Soft Matter, 2012, 8, 4609.	1.2	79
34	Conducting polymer/carbon nanotube composite films made by in situ electropolymerization using an ionic surfactant as the supporting electrolyte. Carbon, 2005, 43, 2186-2191.	5.4	74
35	Template-Free Self-Assembly of Fluorine-Free Hydrophobic Polyimide Aerogels with Lotus or Petal Effect. ACS Applied Materials & Interfaces, 2018, 10, 16901-16901.	4.0	74
36	Single-Walled Carbon Nanotube-Based Coaxial Nanowires:Â Synthesis, Characterization, and Electrical Properties. Journal of Physical Chemistry B, 2005, 109, 1101-1107.	1.2	70

#	Article	IF	CITATIONS
37	Assembling hollow carbon sphere-graphene polylithic aerogels for thermoelectric cells. Nano Energy, 2017, 39, 470-477.	8.2	70
38	Electrically Conductive, Optically Responsive, and Highly Orientated Ti ₃ C ₂ T <i>_x</i> MXene Aerogel Fibers. Advanced Functional Materials, 2022, 32, 2107767.	7.8	67
39	Fast and one-pot synthesis of silica aerogels via a quasi-solvent-exchange-free ambient pressure drying process. Microporous and Mesoporous Materials, 2015, 218, 192-198.	2.2	65
40	Graphene Aerogel Templated Fabrication of Phase Change Microspheres as Thermal Buffers in Microelectronic Devices. ACS Applied Materials & amp; Interfaces, 2017, 9, 41323-41331.	4.0	65
41	Binary Crystallized Supramolecular Aerogels Derived from Host–Guest Inclusion Complexes. ACS Nano, 2015, 9, 11389-11397.	7.3	64
42	Smart and flexible supercapacitor based on a porous carbon nanotube film and polyaniline hydrogel. RSC Advances, 2016, 6, 24946-24951.	1.7	58
43	Cyclic molecule aerogels: a robust cyclodextrin monolith with hierarchically porous structures for removal of micropollutants from water. Journal of Materials Chemistry A, 2017, 5, 4308-4313.	5.2	58
44	Laminated Structural Engineering Strategy toward Carbon Nanotube-Based Aerogel Films. ACS Nano, 2022, 16, 9378-9388.	7.3	58
45	Highâ€Efficiency Cryoâ€Thermocells Assembled with Anisotropic Holey Graphene Aerogel Electrodes and a Eutectic Redox Electrolyte. Advanced Materials, 2019, 31, e1901403.	11.1	57
46	Programmable Writing of Graphene Oxide/Reduced Graphene Oxide Fibers for Sensible Networks with <i>in Situ</i> Welded Junctions. ACS Nano, 2014, 8, 4325-4333.	7.3	56
47	Bending Stiffness-Directed Fabricating of Kevlar Aerogel-Confined Organic Phase-Change Fibers. ACS Nano, 2021, 15, 15180-15190.	7.3	56
48	Synthesis of conducting polymer hydrogels with 2D building blocks and their potential-dependent gel–sol transitions. Chemical Communications, 2011, 47, 6287.	2.2	55
49	Highly Active Carbon Supported Pd–Ag Nanofacets Catalysts for Hydrogen Production from HCOOH. ACS Applied Materials & Interfaces, 2016, 8, 20839-20848.	4.0	53
50	3D printing-directed auxetic Kevlar aerogel architectures with multiple functionalization options. Journal of Materials Chemistry A, 2020, 8, 14243-14253.	5.2	48
51	Emulsion template synthesis of all conducting polymer aerogels with superb adsorption capacity and enhanced electrochemical capacitance. Journal of Materials Chemistry, 2012, 22, 8579.	6.7	44
52	A versatile ambient pressure drying approach to synthesize silica-based composite aerogels. RSC Advances, 2014, 4, 51146-51155.	1.7	43
53	Symbiotic Aerogel Fibers Made via In-Situ Gelation of Aramid Nanofibers with Polyamidoxime for Uranium Extraction. Molecules, 2019, 24, 1821.	1.7	43
54	Solid–Liquid Host–Guest Composites: The Marriage of Porous Solids and Functional Liquids. Advanced Materials, 2021, 33, e2104851.	11.1	37

#	Article	IF	CITATIONS
55	Thermoresponsive Polyrotaxane Aerogels: Converting Molecular Necklaces into Tough Porous Monoliths. ACS Applied Materials & Interfaces, 2018, 10, 1468-1473.	4.0	36
56	Bayberry tannin directed assembly of a bifunctional graphene aerogel for simultaneous solar steam generation and marine uranium extraction. Nanoscale, 2021, 13, 5419-5428.	2.8	36
57	Dendrimer-linked, renewable and magnetic carbon nanotube aerogels. Materials Horizons, 2014, 1, 232-236.	6.4	35
58	Reversible superhydrophobic coatings on lifeless and biotic surfaces via dry-painting of aerogel microparticles. Journal of Materials Chemistry A, 2016, 4, 11408-11415.	5.2	35
59	Flameâ€Retardant Host–Guest Films for Efficient Thermal Management of Cryogenic Devices. Advanced Functional Materials, 2021, 31, 2102232.	7.8	33
60	Surfactant-free synthesis of silica aerogel microspheres with hierarchically porous structure. Journal of Colloid and Interface Science, 2018, 515, 1-9.	5.0	31
61	Aerogel-Directed Energy-Storage Films with Thermally Stimulant Multiresponsiveness. Langmuir, 2019, 35, 943-949.	1.6	29
62	Phase-separation induced synthesis of superhydrophobic silica aerogel powders and granules. Journal of Solid State Chemistry, 2019, 279, 120971.	1.4	26
63	Electroless Plating of Graphene Aerogel Fibers for Electrothermal and Electromagnetic Applications. Langmuir, 2019, 35, 3814-3821.	1.6	26
64	Nanocomposite hydrogels—Controlled synthesis of chiral polyaniline nanofibers and their inclusion in agarose. Synthetic Metals, 2009, 159, 2135-2140.	2.1	21
65	Calcium-Doped Boron Nitride Aerogel Enables Infrared Stealth at High Temperature Up to 1300°C. Nano-Micro Letters, 2022, 14, 18.	14.4	21
66	Elaborate Sizeâ€Tuning of Silica Aerogel Building Blocks Enables Laserâ€Driven Lighting. Advanced Materials, 2022, 34, e2107168.	11.1	20
67	Potential controlled electrochemical assembly of chiral polyaniline withÂenhanced stereochemical selectivity. Polymer, 2007, 48, 5473-5479.	1.8	19
68	Defect ontrolled Preparation of UiOâ€66 Metal–Organic Framework Thin Films with Molecular Sieving Capability. Chemistry - an Asian Journal, 2016, 11, 207-210.	1.7	19
69	General Suspended Printing Strategy toward Programmatically Spatial Kevlar Aerogels. ACS Nano, 2022, 16, 4905-4916.	7.3	19
70	Autocatalytic synthesis of molecular-bridged silica aerogels with excellent absorption and super elasticity. RSC Advances, 2015, 5, 91407-91413.	1.7	18
71	Robust urethane-bridged silica aerogels available for water-carved aerosculptures. New Journal of Chemistry, 2017, 41, 1953-1958.	1.4	18
72	Synthesis and physicochemical properties of graphene/ZrO ₂ composite aerogels. RSC Advances, 2015, 5, 11738-11744.	1.7	17

#	Article	IF	CITATIONS
73	Preparation and characterization of a composite hydrogel with graphene oxide as an acid catalyst. Soft Matter, 2015, 11, 3215-3221.	1.2	16
74	Comparison of chiral polyaniline carbon nanotube nanocomposites synthesized by aniline dimer-assisted chemistry and electrochemistry methods. Synthetic Metals, 2008, 158, 336-344.	2.1	13
75	Inner Surface-Functionalized Graphene Aerogel Microgranules with Static Microwave Attenuation and Dynamic Infrared Shielding. Langmuir, 2018, 34, 9004-9014.	1.6	13
76	Superhydrophobic polyimide aerogels via conformal coating strategy with excellent underwater performances. Journal of Applied Polymer Science, 2020, 137, 48849.	1.3	13
77	Nanoporous Kevlar Aerogel Confined Phase Change Fluids Enable Superâ€Flexible Thermal Diodes. Advanced Functional Materials, 2022, 32, .	7.8	13
78	Electrodeposition of Chiral Polymer–Carbon Nanotube Composite Films. ChemPhysChem, 2007, 8, 1766-1769.	1.0	12
79	Controllable Synthesis of Co ³⁺ -Enriched Anisotropy Co ₃ O ₄ Hexagonal Prisms toward Enhanced Lithium Storage. ACS Applied Energy Materials, 2020, 3, 5856-5866.	2.5	12
80	Quasi-static compression properties of graphene aerogel. Diamond and Related Materials, 2021, 111, 108225.	1.8	10
81	Silica Aerogels with Self-Reinforced Microstructure for Bioinspired Hydrogels. Langmuir, 2021, 37, 5923-5931.	1.6	10
82	The influence of the drying method on the microstructure and the compression behavior of graphene aerogel. Diamond and Related Materials, 2022, 121, 108772.	1.8	10
83	Hydrogen bonding directed assembly of simonkolleite aerogel by a sol–gel approach. Materials and Design, 2016, 93, 503-508.	3.3	9
84	Recyclable Nanoporous Materials with Ordered Tunnels Selfâ€Assembled from α―and γâ€Cyclodextrins. ChemNanoMat, 2019, 5, 838-846.	1.5	9
85	Graphene aerogel-phase change material host-guest smart films. FlatChem, 2021, 27, 100249.	2.8	9
86	Electrokinetic effect and H ₂ O ₂ boosting in synthetic graphene/α-FeOOH aerogel films for the generation of electricity. Journal of Materials Chemistry A, 2021, 9, 5588-5596.	5.2	9
87	Bio-inspired design and fabrication of an ultralight and strong nano-carbon gradient composite. Materials and Design, 2016, 107, 198-204.	3.3	7
88	"Hot spots―growth on single nanowire controlled by electric charge. Nanoscale, 2016, 8, 12029-12034.	2.8	6
89	Graphene Hybrid Aerogels Made via Phase Transfer Strategy. Advanced Materials Interfaces, 2016, 3, 1600541.	1.9	5
90	Robust Silica–Polyimide Aerogel Blanket for Water-Proof and Flame-Retardant Self-Floating Artificial Island. Frontiers in Materials, 2021, 8, .	1.2	5

			-
\mathbf{v}	ICT C	NIC	
Λu	IEIU	IN G	LIANG

#	Article	IF	CITATIONS
91	Solid–Liquid–Vapor Triphase Gel. Langmuir, 2021, 37, 13501-13511.	1.6	4
92	Recyclable thermo-insulating panels made by reversible gelling of dispersed silica aerogel microparticles. Journal of Sol-Gel Science and Technology, 2023, 106, 432-443.	1.1	2
93	Hybrid Aerogels: Graphene Hybrid Aerogels Made via Phase Transfer Strategy (Adv. Mater. Interfaces) Tj ETQq1 1	0.78431 1.9	4 rgBT /Overl
94	Graphene Aerogel-Directed Fabrication of Phase Change Composites. , 2018, , .		1
95	Conducting Polymer Aerogels. , 0, , .		0