
Matthieu Lacroix

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3002714/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The p53 Pathway and Metabolism: The Tree That Hides the Forest. Cancers, 2021, 13, 133.	3.7	27
2	The multifunctional protein E4F1 links P53 to lipid metabolism in adipocytes. Nature Communications, 2021, 12, 7037.	12.8	15
3	Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Molecular Metabolism, 2020, 33, 2-22.	6.5	200
4	SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics. Nucleic Acids Research, 2020, 48, e55-e55.	14.5	257
5	The proteasome maturation protein POMP increases proteasome assembly and activity in psoriatic lesional skin. Journal of Dermatological Science, 2017, 88, 10-19.	1.9	11
6	E4F1 controls a transcriptional program essential for pyruvate dehydrogenase activity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10998-11003.	7.1	27
7	E4F1-mediated control of pyruvate dehydrogenase activity is essential for skin homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11004-11009.	7.1	22
8	The Transcription Factor E4F1 Coordinates CHK1-Dependent Checkpoint and Mitochondrial Functions. Cell Reports, 2015, 11, 220-233.	6.4	38
9	AMPK/HuR-Driven IL-20 Post-Transcriptional Regulation in Psoriatic Skin. Journal of Investigative Dermatology, 2015, 135, 2732-2741.	0.7	12
10	Clinical Expression and New SPINK5 Splicing Defects in Netherton Syndrome: Unmasking a Frequent Founder Synonymous Mutation and Unconventional Intronic Mutations. Journal of Investigative Dermatology, 2012, 132, 575-582.	0.7	33
11	E4F1 deficiency results in oxidative stress–mediated cell death of leukemic cells. Journal of Experimental Medicine, 2011, 208, 1403-1417.	8.5	20
12	E4F1 connects the Bmi1-ARF-p53 pathway to epidermal stem cell-dependent skin homeostasis. Cell Cycle, 2011, 10, 866-867.	2.6	7
13	Transcription factor E4F1 is essential for epidermal stem cell maintenance and skin homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21076-21081.	7.1	36
14	Par2 Inactivation Inhibits Early Production of TSLP, but Not Cutaneous Inflammation, in Netherton Syndrome Adult Mouse Model. Journal of Investigative Dermatology, 2010, 130, 2736-2742.	0.7	97
15	Elastase 2 is expressed in human and mouse epidermis and impairs skin barrier function in Netherton syndrome through filaggrin and lipid misprocessing. Journal of Clinical Investigation, 2010, 120, 871-882.	8.2	114
16	Kallikrein 5 induces atopic dermatitis–like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. Journal of Experimental Medicine, 2009, 206, 1135-1147.	8.5	453
17	Kallikrein 5 induces atopic dermatitis–like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. Journal of Cell Biology, 2009, 185, i7-i7.	5.2	0
18	The histoneâ€binding protein COPR5 is required for nuclear functions of the protein arginine methyltransferase PRMT5. EMBO Reports, 2008, 9, 452-458.	4.5	106

MATTHIEU LACROIX

#	Article	IF	CITATIONS
19	Intrinsic ubiquitination activity of PCAF controls the stability of the oncoprotein Hdm2. Nature Cell Biology, 2007, 9, 331-338.	10.3	164
20	E4F1 Is an Atypical Ubiquitin Ligase that Modulates p53 Effector Functions Independently of Degradation. Cell, 2006, 127, 775-788.	28.9	214
21	The E4F Protein Is Required for Mitotic Progression during Embryonic Cell Cycles. Molecular and Cellular Biology, 2004, 24, 6467-6475.	2.3	46
22	IL-8 expression and its possible relationship with estrogen-receptor-negative status of breast cancer cells. Oncogene, 2003, 22, 256-265.	5.9	196