
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3002536/publications.pdf Version: 2024-02-01

ΙΔΝΙ ΟΔΙ ΕΔ

#	Article	IF	CITATIONS
1	CD8 Tâ€cellâ€mediated cerebellitis directed against Purkinje cell antigen after ipilimumab for small cell lung cancer. Neuropathology and Applied Neurobiology, 2022, 48, .	1.8	5
2	The impact of smoking cessation on multiple sclerosis disease progression. Brain, 2022, 145, 1368-1378.	3.7	16
3	Long-Term Cognitive Outcome following Aneurysmal Subarachnoid Haemorrhage. Journal of Stroke and Cerebrovascular Diseases, 2022, 31, 106184.	0.7	8
4	Genome-Wide Association Study of Clinical Outcome After Aneurysmal Subarachnoid Haemorrhage: Protocol. Translational Stroke Research, 2022, 13, 565-576.	2.3	5
5	Auditory outcome following aneurysmal subarachnoid haemorrhage. Journal of the Neurological Sciences, 2022, 434, 120125.	0.3	3
6	Iron Deposition in the Brain After Aneurysmal Subarachnoid Hemorrhage. Stroke, 2022, 53, 1633-1642.	1.0	28
7	Association of Haptoglobin Phenotype With Neurological and Cognitive Outcomes in Patients With Subarachnoid Hemorrhage. Frontiers in Aging Neuroscience, 2022, 14, 819628.	1.7	3
8	Risk–benefit analysis of COVID-19 vaccines — a neurological perspective. Nature Reviews Neurology, 2022, 18, 69-70.	4.9	6
9	Microglial heterogeneity after subarachnoid haemorrhage. Clinical and Translational Discovery, 2022, 2, .	0.2	2
10	004†Physical activity monitoring to assess disability progression in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, A15.2-A15.	0.9	0
11	Blood-brain barrier permeability changes in the first year after alemtuzumab treatment predict 2-year outcomes in relapsing-remitting multiple sclerosis. Multiple Sclerosis and Related Disorders, 2022, 63, 103891.	0.9	6
12	Zonulin and blood–brain barrier permeability are dissociated in humans. Clinical and Translational Medicine, 2022, 12, .	1.7	4
13	Long-term prognostic counselling in people with multiple sclerosis using an online analytical processing tool. Multiple Sclerosis Journal, 2021, 27, 1442-1450.	1.4	3
14	Spectrum, risk factors and outcomes of neurological and psychiatric complications of COVID-19: a UK-wide cross-sectional surveillance study. Brain Communications, 2021, 3, fcab168.	1.5	33
15	Cervical spinal degenerative disease in multiple sclerosis. European Journal of Neurology, 2021, 28, 2497-2502.	1.7	5
16	Considerations for causality assessment of neurological and neuropsychiatric complications of SARS-CoV-2 vaccines: from cerebral venous sinus thrombosis to functional neurological disorder. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1144-1151.	0.9	37
17	Neurological manifestations of SARS-CoV-2 infection in hospitalised children and adolescents in the UK: a prospective national cohort study. The Lancet Child and Adolescent Health, 2021, 5, 631-641.	2.7	114
18	COVID-19 Encephalitis with SARS-CoV-2 Detected in Cerebrospinal Fluid Presenting as a Stroke Mimic. Journal of Stroke and Cerebrovascular Diseases, 2021, 30, 105915.	0.7	5

#	Article	IF	CITATIONS
19	The blood–brain barrier in systemic infection and inflammation. Cellular and Molecular Immunology, 2021, 18, 2489-2501.	4.8	177
20	Eosinophilia during natalizumab treatment: Incidence, risk factors and temporal patterns. Journal of Neuroimmunology, 2021, 361, 577729.	1.1	1
21	CRP (C-Reactive Protein) in Outcome Prediction After Subarachnoid Hemorrhage and the Role of Machine Learning. Stroke, 2021, 52, 3276-3285.	1.0	22
22	Neurofilament light predicts neurological outcome after subarachnoid haemorrhage. Brain, 2021, 144, 761-768.	3.7	22
23	Gadolinium enhancement of cranial nerves: Implications for interstitial fluid drainage from brainstem into cranial nerves in humans. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	4
24	Prognostic information for people with MS: Impossible or inevitable?. Multiple Sclerosis Journal, 2020, 26, 771-773.	1.4	5
25	Do people with multiple sclerosis want to discuss their long-term prognosis? A nationwide study in Argentina. Multiple Sclerosis and Related Disorders, 2020, 37, 101445.	0.9	8
26	High-Throughput Urinary Neopterin-to-Creatinine Ratio Monitoring of Systemic Inflammation. journal of applied laboratory medicine, The, 2020, 5, 101-113.	0.6	7
27	Characterising neuropsychiatric disorders in patients with COVID-19 – Authors' reply. Lancet Psychiatry,the, 2020, 7, 934-935.	3.7	10
28	Physical activity monitoring to assess disability progression in multiple sclerosis. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2020, 6, 205521732097518.	0.5	10
29	Haptoglobin genotype and outcome after spontaneous intracerebral haemorrhage. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 298-304.	0.9	4
30	Defining causality in COVID-19 and neurological disorders. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 811-812.	0.9	62
31	CNS inflammatory vasculopathy with antimyelin oligodendrocyte glycoprotein antibodies in COVID-19. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, e813.	3.1	54
32	Haemoglobin causes neuronal damage in vivo which is preventable by haptoglobin. Brain Communications, 2020, 2, fcz053.	1.5	39
33	Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry,the, 2020, 7, 875-882.	3.7	1,005
34	Haptoglobin genotype and outcome after aneurysmal subarachnoid haemorrhage. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 305-313.	0.9	11
35	Study protocol for SFX-01 after subarachnoid haemorrhage (SAS): a multicentre randomised double-blinded, placebo controlled trial. BMJ Open, 2020, 10, e028514.	0.8	23
36	Neuroprotective Role of the Nrf2 Pathway in Subarachnoid Haemorrhage and Its Therapeutic Potential. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-21.	1.9	47

#	Article	IF	CITATIONS
37	Genetic determinants of circulating haptoglobin concentration. Clinica Chimica Acta, 2019, 494, 138-142.	0.5	14
38	Hearing impairment after subarachnoid hemorrhage. Annals of Clinical and Translational Neurology, 2019, 6, 420-430.	1.7	6
39	SFX-01 reduces residual disability after experimental autoimmune encephalomyelitis. Multiple Sclerosis and Related Disorders, 2019, 30, 257-261.	0.9	6
40	Haptoglobin genotype and aneurysmal subarachnoid hemorrhage. Neurology, 2019, 92, e2150-e2164.	1.5	15
41	Blood–brain barrier permeability measured using dynamic contrastâ€enhanced magnetic resonance imaging: a validation study. Journal of Physiology, 2019, 597, 699-709.	1.3	47
42	Permeability of the blood–brain barrier predicts no evidence of disease activity at 2 years after natalizumab or fingolimod treatment in relapsing–remitting multiple sclerosis. Annals of Neurology, 2018, 83, 902-914.	2.8	11
43	A subarachnoid haemorrhage-specific outcome tool. Brain, 2018, 141, 1111-1121.	3.7	41
44	The blood-brain interface: a culture change. Brain, Behavior, and Immunity, 2018, 68, 11-16.	2.0	16
45	Risk knowledge of people with relapsing-remitting multiple sclerosis – Results of an international survey. PLoS ONE, 2018, 13, e0208004.	1.1	18
46	Do people with multiple sclerosis want to know their prognosis? A UK nationwide study. PLoS ONE, 2018, 13, e0193407.	1.1	24
47	Haemoglobin scavenging in intracranial bleeding: biology and clinical implications. Nature Reviews Neurology, 2018, 14, 416-432.	4.9	103
48	Haptoglobin attenuates haemoglobin associated neurotoxicity in the brain. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-1-41.	0.0	0
49	The blood-brain barrier in systemic inflammation. Brain, Behavior, and Immunity, 2017, 60, 1-12.	2.0	714
50	The effect of systemic inflammation on human brain barrier function. Brain, Behavior, and Immunity, 2017, 62, 35-40.	2.0	82
51	Haptoglobin Genotype and Outcome after Subarachnoid Haemorrhage: New Insights from a Meta-Analysis. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-9.	1.9	18
52	Lymphopenia in treatment-naive relapsing multiple sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e275.	3.1	10
53	Pathophysiology of Lymphatic Drainage of the Central Nervous System. , 2016, , 479-501.		1
54	Outcome and Biomarker Analysis from a Multicenter Phase 2 Study of Ipilimumab in Combination with Carboplatin and Etoposide as First-Line Therapy for Extensive-Stage SCLC. Journal of Thoracic Oncology, 2016, 11, 1511-1521.	0.5	95

#	Article	IF	CITATIONS
55	Heme–Hemopexin Scavenging Is Active in the Brain and Associates With Outcome After Subarachnoid Hemorrhage. Stroke, 2016, 47, 872-876.	1.0	46
56	A comparative analysis of Patient-Reported Expanded Disability Status Scale tools. Multiple Sclerosis Journal, 2016, 22, 1349-1358.	1.4	54
57	How Do People with Multiple Sclerosis Experience Prognostic Uncertainty and Prognosis Communication? A Qualitative Study. PLoS ONE, 2016, 11, e0158982.	1.1	50
58	Relapse in multiple sclerosis. BMJ, The, 2015, 350, h1765-h1765.	3.0	44
59	Haemoglobin Scavenging After Subarachnoid Haemorrhage. Acta Neurochirurgica Supplementum, 2015, 120, 51-54.	0.5	15
60	A Novel Phase Ii Trial of Ipilimumab, Carboplatin and Etoposide (Ice) for the First Line Treatment of Extensive Stage Small Cell Lung Cancer (Sclc). Annals of Oncology, 2014, 25, iv516.	0.6	1
61	CNS inflammation other than multiple sclerosis: How likely is diagnosis?. Neurology, 2014, 82, 1187-1189.	1.5	7
62	Structural Basis for Inflammation-driven Shedding of CD163 Ectodomain and Tumor Necrosis Factor-α in Macrophages. Journal of Biological Chemistry, 2014, 289, 778-788.	1.6	69
63	A <scp>W</scp> ebâ€based tool for personalized prediction of longâ€term disease course in patients with multiple sclerosis. European Journal of Neurology, 2013, 20, 1107-1109.	1.7	24
64	0830â€Help! I've become shorter than my wife: a treatable cause of camptocormia. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, e1.156-e1.	0.9	0
65	The intrathecal CD163â€haptoglobin–hemoglobin scavenging system in subarachnoid hemorrhage. Journal of Neurochemistry, 2012, 121, 785-792.	2.1	98
66	CD8 ⁺ Tâ€cell crossâ€competition is governed by peptide–MHC class I stability. European Journal of Immunology, 2012, 42, 256-263.	1.6	28
67	Natalizumab for relapsing remitting multiple sclerosis. The Cochrane Library, 2011, , CD007621.	1.5	55
68	Cerebrospinal fluid analysis in the 2010 revised McDonald's multiple sclerosis diagnostic criteria. Annals of Neurology, 2011, 70, 183-183.	2.8	9
69	POI17 Dramatic radiological improvement in isolated neurosarcoidosis treated with infliximab. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, e56-e57.	0.9	0
70	Pathophysiology of the lymphatic drainage of the central nervous system: Implications for pathogenesis and therapy of multiple sclerosis. Pathophysiology, 2010, 17, 295-306.	1.0	116
71	N-methyl-d-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain, 2010, 133, 1655-1667.	3.7	900
72	Cognitive and behavioural correlates of different domains of psychological adjustment in early-stage multiple sclerosis. Journal of Psychosomatic Research, 2010, 69, 353-361.	1.2	47

#	Article	IF	CITATIONS
73	Immune-to-brain signalling: The role of cerebral CD163-positive macrophages. Neuroscience Letters, 2008, 448, 41-46.	1.0	22
74	Pearls & Oy-sters: Resolution of hemichorea following endarterectomy for severe carotid stenosis. Neurology, 2008, 71, e80-2.	1.5	21
75	Corticosteroids for the long-term treatment in multiple sclerosis. The Cochrane Library, 2008, , CD006264.	1.5	40
76	An antigen-specific pathway for CD8 T cells across the blood-brain barrier. Journal of Experimental Medicine, 2007, 204, 2023-2030.	4.2	188
77	What is immune privilege (not)?. Trends in Immunology, 2007, 28, 12-18.	2.9	644
78	What is the blood–brain barrier (not)?. Trends in Immunology, 2007, 28, 5-11.	2.9	484
79	Blood-derived dendritic cells in an acute brain injury. Journal of Neuroimmunology, 2005, 166, 167-172.	1.1	47
80	Mannose receptor expression specifically reveals perivascular macrophages in normal, injured, and diseased mouse brain. Glia, 2005, 49, 375-384.	2.5	160
81	CD163-positive perivascular macrophages in the human CNS express molecules for antigen recognition and presentation. Glia, 2005, 51, 297-305.	2.5	194
82	Biochemical Indices of Renal Osteodystrophy in Dialysis Patients on the Island of Malta. International Urology and Nephrology, 2005, 37, 335-340.	0.6	2
83	Stress and exacerbations in multiple sclerosis: Whether stress triggers relapses remains a conundrum. BMJ: British Medical Journal, 2004, 328, 287-287.	2.4	5
84	Defining Causality in Neurological & Neuropsychiatric COVID-19 Vaccine Complications: What Have We Learnt from Current and Previous Vaccination Campaigns?. SSRN Electronic Journal, 0, , .	0.4	2