Martin Wolkewitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3002532/publications.pdf

Version: 2024-02-01

172443 189881 2,930 113 29 50 citations h-index g-index papers 117 117 117 4498 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Coronary revascularization in acute coronary syndrome: does the choice of the conduit matter?. Journal of Cardiovascular Surgery, 2022, 62, .	0.6	O
2	Robust and durable serological response following pediatric SARS-CoV-2 infection. Nature Communications, 2022, 13, 128.	12.8	54
3	Incidence and mortality of hospital-acquired bacteraemia: a population-based cohort study applying a multi-state model approach. Clinical Microbiology and Infection, 2022, 28, 879.e9-879.e15.	6.0	5
4	Response to "Overlooked Shortcomings of Observational Studies of Interventions in Coronavirus Disease 2019: An Illustrated Review for the Clinician―by Tleyjeh et al Open Forum Infectious Diseases, 2022, 9, ofab614.	0.9	0
5	Data-driven prediction of COVID-19 cases in Germany for decision making. BMC Medical Research Methodology, 2022, 22, 116.	3.1	7
6	Navigating hospitals safely through the COVID-19 epidemic tide: Predicting case load for adjusting bed capacity. Infection Control and Hospital Epidemiology, 2021, 42, 653-658.	1.8	12
7	Correction of Survival Bias in a Study About Increased Mortality of Heads of Government. American Statistician, 2021, 75, 85-91.	1.6	O
8	Mortality attributable to third-generation cephalosporin resistance in Gram-negative bloodstream infections in African hospitals: a multi-site retrospective study. JAC-Antimicrobial Resistance, 2021, 3, dlaa130.	2.1	4
9	Predicting Potential Prevention Effects on Hospital Burden of Nosocomial Infections: A Multistate Modeling Approach. Value in Health, 2021, 24, 830-838.	0.3	5
10	Effect of didecyl dimethyl ammonium chloride (DDAC)-impregnated washcloth wipe whole-body bathing on catheter-related bloodstream infections and central venous line-associated infections in adult intensive care units. Clinical Microbiology and Infection, 2021, , .	6.0	1
11	Methodological evaluation of bias in observational coronavirus disease 2019 studies on drug effectiveness. Clinical Microbiology and Infection, 2021, 27, 949-957.	6.0	14
12	Absolute mortality risk assessment of COVID-19 patients: the Khorshid COVID Cohort (KCC) study. BMC Medical Research Methodology, 2021, 21, 146.	3.1	4
13	â€~Methodological evaluation of bias in observational COVID-19 studies on drug effectiveness' – Author's reply. Clinical Microbiology and Infection, 2021, 27, 1045.	6.0	1
14	Estimating incidence and attributable length of stay of healthcare-associated infections—Modeling the Swiss point-prevalence survey. Infection Control and Hospital Epidemiology, 2021, , 1-10.	1.8	3
15	Sampling designs for rare time-dependent exposures: a comparison of the nested exposure case-control design and exposure density sampling. Epidemiology and Infection, 2021, 149, e122.	2.1	1
16	Harmonizing Heterogeneous Endpoints in Coronavirus Disease 2019 Trials Without Loss of Information. Critical Care Medicine, 2021, 49, e11-e19.	0.9	18
17	Automatic Classification Between COVID-19 and Non-COVID-19 Pneumonia Using Symptoms, Comorbidities, and Laboratory Findings: The Khorshid COVID Cohort Study. Frontiers in Medicine, 2021, 8, 768467.	2.6	4
18	Accounting for length of hospital stay in regression models in clinical epidemiology. Statistica Neerlandica, 2020, 74, 24-37.	1.6	0

#	Article	IF	Citations
19	Follow-on rifaximin for the prevention of recurrence following standard treatment of infection with Clostridium difficile: a competing risks analysis provides a full picture of possible treatment effects. Gut, 2020, 69, 398-400.	12.1	1
20	The populationâ€attributable fraction for timeâ€dependent exposures using dynamic prediction and landmarking. Biometrical Journal, 2020, 62, 583-597.	1.0	2
21	The impact of hospital-acquired infections on the patient-level reimbursement-cost relationship in a DRG-based hospital payment system. International Journal of Health Economics and Management, 2020, 20, 1-11.	1.1	7
22	Optimizing design of research to evaluate antibiotic stewardship interventions: consensus recommendations of a multinational working group. Clinical Microbiology and Infection, 2020, 26, 41-50.	6.0	49
23	Protocol for a prospective cohort study: Prevention of Transmissions by Effective Colonisation Tracking in Neonates (PROTECT-Neo). BMJ Open, 2020, 10, e034068.	1.9	2
24	Joint analysis of duration of ventilation, length of intensive care, and mortality of COVID-19 patients: a multistate approach. BMC Medical Research Methodology, 2020, 20, 206.	3.1	83
25	<p>Statistical Analysis of Clinical COVID-19 Data: A Concise Overview of Lessons Learned, Common Errors and How to Avoid Them</p> . Clinical Epidemiology, 2020, Volume 12, 925-928.	3.0	34
26	Carotid geometry is an independent predictor of wall thickness – a 3D cardiovascular magnetic resonance study in patients with high cardiovascular risk. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 67.	3.3	18
27	Intra-day variations of blood reelin levels in healthy individuals. Archives of Medical Science, 2020, 16, 118-123.	0.9	3
28	Infectious disease consultation for candidaemia. Lancet Infectious Diseases, The, 2020, 20, 164-165.	9.1	2
29	Methodological challenges of analysing COVID-19 data during the pandemic. BMC Medical Research Methodology, 2020, 20, 81.	3.1	64
30	Mechanical ventilation and the daily cost of ICU care. BMC Health Services Research, 2020, 20, 267.	2.2	28
31	COVID-19 in-hospital mortality and mode of death in a dynamic and non-restricted tertiary care model in Germany. PLoS ONE, 2020, 15, e0242127.	2.5	47
32	Title is missing!. , 2020, 15, e0242127.		0
33	Title is missing!. , 2020, 15, e0242127.		0
34	Title is missing!. , 2020, 15, e0242127.		0
35	Title is missing!. , 2020, 15, e0242127.		0
36	Costs of hospital-acquired Clostridium difficile infections: an analysis on the effect of time-dependent exposures using routine and surveillance data. Cost Effectiveness and Resource Allocation, 2019, 17, 16.	1.5	8

#	Article	IF	Citations
37	The populationâ€attributable fraction for timeâ€dependent exposures and competing risks—A discussion on estimands. Statistics in Medicine, 2019, 38, 3880-3895.	1.6	9
38	Estimands to quantify prolonged hospital stay associated with nosocomial infections. BMC Medical Research Methodology, 2019, 19, 111.	3.1	18
39	RE: "RISK-SET MATCHING TO ASSESS THE IMPACT OF HOSPITAL-ACQUIRED BLOODSTREAM INFECTIONS― American Journal of Epidemiology, 2019, 188, 1192-1193.	3.4	1
40	Measuring the Financial Burden of Resistance: What Should Be Compared?. Clinical Infectious Diseases, 2019, 69, 1082-1082.	5.8	3
41	Analyzing the impact of duration of ventilation, hospitalization, and ventilation episodes on the risk of pneumonia. Infection Control and Hospital Epidemiology, 2019, 40, 301-306.	1.8	12
42	Measuring the in-hospital costs of Pseudomonas aeruginosa pneumonia: methodology and results from a German teaching hospital. BMC Infectious Diseases, 2019, 19, 1028.	2.9	19
43	Clinical outcomes of hospitalised patients with catheter-associated urinary tract infection in countries with a high rate of multidrug-resistance: the COMBACTE-MAGNET RESCUING study. Antimicrobial Resistance and Infection Control, 2019, 8, 198.	4.1	32
44	Impact of mechanical ventilation on the daily costs of ICU care: a systematic review and meta regression. Epidemiology and Infection, 2019, 147, e314.	2.1	29
45	Investigating the Impact of Early Valve Surgery on Survival in Staphylococcus aureus Infective Endocarditis Using a Marginal Structural Model Approach: Results of a Large, Prospectively Evaluated Cohort. Clinical Infectious Diseases, 2019, 69, 487-494.	5.8	6
46	Effectiveness of a hospital-wide infection control programme on the incidence of healthcare-associated infections and associated severe sepsis and septic shock: a prospective interventional study. Clinical Microbiology and Infection, 2019, 25, 462-468.	6.0	15
47	Use of prevalence data to study sepsis incidence and mortality in intensive care units. Lancet Infectious Diseases, The, 2018, 18, 252.	9.1	7
48	Estimating the attributable costs of hospital-acquired infections requires a distinct categorization of cases based on time of infection. American Journal of Infection Control, 2018, 46, 729.	2.3	4
49	Methodological challenges in using point-prevalence versus cohort data in risk factor analyses of nosocomial infections. Annals of Epidemiology, 2018, 28, 475-480.e1.	1.9	4
50	Determining the Attributable Costs of <i>Clostridium difficile</i> Infections When Exposure Time Is Lacking: Be Wary of "Conditioning on the Future†Infection Control and Hospital Epidemiology, 2018, 39, 759-760.	1.8	3
51	Estimating the additional costs of surgical site infections: length bias, time-dependent bias, and conditioning on the future. Journal of Hospital Infection, 2018, 99, 103-104.	2.9	7
52	Relative risk and population-attributable fraction of ICU death caused by susceptible and resistant Pseudomonas aeruginosa ventilator-associated pneumonia: a competing risks approach to investigate the OUTCOMEREA database. Intensive Care Medicine, 2018, 44, 1177-1179.	8.2	11
53	Analyzing the impact of depth of response on survival in patients with metastatic non-small-cell lung cancer. Annals of Oncology, 2018, 29, 282-283.	1.2	4
54	Prevention of hospital infections by intervention and training (PROHIBIT): results of a pan-European cluster-randomized multicentre study to reduce central venous catheter-related bloodstream infections. Intensive Care Medicine, 2018, 44, 48-60.	8.2	48

#	Article	IF	CITATIONS
55	Improving nested case-control studies to conduct a full competing-risks analysis for nosocomial infections. Infection Control and Hospital Epidemiology, 2018, 39, 1196-1201.	1.8	3
56	Estimation of adjusted expected excess lengthâ€ofâ€stay associated with ventilationâ€acquired pneumonia in intensive care: A multistate approach accounting for timeâ€dependent mechanical ventilation. Biometrical Journal, 2018, 60, 1135-1150.	1.0	5
57	Optimizing the Design and Analysis of Clinical Trials for Antibacterials Against Multidrug-resistant Organisms: A White Paper From COMBACTE's STAT-Net. Clinical Infectious Diseases, 2018, 67, 1922-1931.	5.8	23
58	Simulation shows undesirable results for competing risks analysis with time-dependent covariates for clinical outcomes. BMC Medical Research Methodology, 2018, 18, 79.	3.1	32
59	Abdominal aortic aneurysm neck remodeling after Anaconda stent graft implantation. Journal of Vascular Surgery, 2018, 68, 1354-1359.e2.	1.1	17
60	Risk prediction for Staphylococcus aureus surgical site infection following cardiothoracic surgery; A secondary analysis of the V710-P003 trial. PLoS ONE, 2018, 13, e0193445.	2.5	17
61	Time series models of environmental exposures: Good predictions or good understanding. Environmental Research, 2017, 154, 222-225.	7.5	10
62	Competing risks need to be considered in survival analysis models for cardiovascular outcomes. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 1427-1431.	0.8	26
63	Survival biases lead to flawed conclusions in observational treatment studies of influenza patients. Journal of Clinical Epidemiology, 2017, 84, 121-129.	5.0	27
64	Landmark prediction of nosocomial infection risk to disentangle short- and long-stay patients. Journal of Hospital Infection, 2017, 96, 81-84.	2.9	17
65	Appropriate endpoints for evaluation of new antibiotic therapies for severe infections: a perspective from COMBACTE's STAT-Net. Intensive Care Medicine, 2017, 43, 1002-1012.	8.2	44
66	The timeâ€dependent "cureâ€death†model investigating two equally important endpoints simultaneously in trials treating highâ€risk patients with resistant pathogens. Pharmaceutical Statistics, 2017, 16, 267-279.	1.3	4
67	Pre―and postâ€diagnostic betaâ€blocker use and prognosis after colorectal cancer: Results from a populationâ€based study. International Journal of Cancer, 2017, 141, 62-71.	5.1	24
68	Pre- and post-diagnostic \hat{l}^2 -blocker use and lung cancer survival: A population-based cohort study. Scientific Reports, 2017, 7, 2911.	3.3	30
69	Multistate Modeling to Analyze Nosocomial Infection Data: An Introduction and Demonstration. Infection Control and Hospital Epidemiology, 2017, 38, 953-959.	1.8	34
70	P. aeruginosa colonization at ICU admission as a risk factor for developing P. aeruginosa ICU pneumonia. Antimicrobial Resistance and Infection Control, 2017, 6, 38.	4.1	16
71	Estimating the burden of nosocomial infections: Time dependency and cost clustering should be taken into account. American Journal of Infection Control, 2017, 45, 94-95.	2.3	13
72	Staphylococcus aureus colonization at ICU admission as a risk factor for developing S.Âaureus ICU pneumonia. Clinical Microbiology and Infection, 2017, 23, 49.e9-49.e14.	6.0	47

#	Article	IF	Citations
73	A caseâ€cohort approach for multiâ€state models in hospital epidemiology. Statistics in Medicine, 2017, 36, 481-495.	1.6	4
74	Rationale and design of ASPIRE-ICU: a prospective cohort study on the incidence and predictors of Staphylococcus aureus and Pseudomonas aeruginosa pneumonia in the ICU. BMC Infectious Diseases, 2017, 17, 643.	2.9	13
75	Basic parametric analysis for a multi-state model in hospital epidemiology. BMC Medical Research Methodology, 2017, 17, 111.	3.1	22
76	Accounting for Competing Events in Multivariate Analyses of Hospital-Acquired Infection Risk Factors. Infection Control and Hospital Epidemiology, 2016, 37, 1122-1124.	1.8	4
77	Neuraminidase Inhibitors and Hospital Mortality in British Patients with H1N1 Influenza A: A Re-Analysis of Observational Data. PLoS ONE, 2016, 11, e0160430.	2.5	14
78	Necessity of a Competing Risk Approach in Risk Factor Analysis of Central Line–Associated Bloodstream Infection. Infection Control and Hospital Epidemiology, 2016, 37, 1255-1257.	1.8	5
79	Multiple time scales in modeling the incidence of infections acquired in intensive care units. BMC Medical Research Methodology, 2016, 16, 116.	3.1	10
80	RE: "COMPARISON OF STATISTICAL APPROACHES FOR DEALING WITH IMMORTAL TIME BIAS IN DRUG EFFECTIVENESS STUDIES― American Journal of Epidemiology, 2016, 184, 856-858.	3.4	3
81	Key priorities in the prevention and control of healthcare-associated infection: a survey of European and other international infection prevention experts. Infection, 2016, 44, 719-724.	4.7	5
82	A full competing risk analysis of hospital-acquired infections can easily be performed by a case-cohort approach. Journal of Clinical Epidemiology, 2016, 74, 187-193.	5.0	14
83	Analysis of Clinical Cohort Data Using Nested Case-control and Case-cohort Sampling Designs. Methods of Information in Medicine, 2015, 54, 505-514.	1.2	14
84	Estimating the Risk of Ventilator-associated Pneumonia as a Function of Time. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 640-641.	5.6	2
85	Evaluation of Guided Bone Regeneration around Oral Implants over Different Healing Times Using Two Different Bovine Bone Materials: A Randomized, Controlled Clinical and Histological Investigation. Clinical Implant Dentistry and Related Research, 2015, 17, 957-971.	3.7	9
86	Nested Case-Control Studies in Cohorts with Competing Events. Epidemiology, 2014, 25, 122-125.	2.7	9
87	Interventions to control nosocomial infections: study designs and statistical issues. Journal of Hospital Infection, 2014, 86, 77-82.	2.9	13
88	A retrospective evaluation of teeth restored with zirconia ceramic posts: 10-year results. Clinical Oral Investigations, 2014, 18, 1181-1187.	3.0	31
89	Avoidable statistical pitfalls in analyzing length of stay in intensive care units or hospitals. Critical Care, 2014, 18, 408.	5 . 8	3
90	Statistical and methodological concerns about the beneficial effect of neuraminidase inhibitors on mortality. Lancet Respiratory Medicine, the, 2014, 2, e8-e9.	10.7	8

#	Article	IF	CITATIONS
91	Interpreting and comparing risks in the presence of competing events. BMJ, The, 2014, 349, g5060-g5060.	6.0	149
92	Multilevel competing risk models to evaluate the risk of nosocomial infection. Critical Care, 2014, 18, R64.	5.8	27
93	Responding to manuscript CLOI-D-10-00562: Reliability of shade selection using an intraoral spectrophotometer. Clinical Oral Investigations, 2013, 17, 1027-1028.	3.0	0
94	Aggressive versus conservative initiation of antibiotics. Lancet Infectious Diseases, The, 2013, 13, 387-388.	9.1	2
95	Hospital-acquired infections-appropriate statistical treatment is urgently needed!. International Journal of Epidemiology, 2013, 42, 1502-1508.	1.9	85
96	Paediatric hospital-acquired bacteraemia in developing countries. Lancet, The, 2012, 379, 1484.	13.7	4
97	Time-dependent study entries and exposures in cohort studies can easily be sources of different and avoidable types of bias. Journal of Clinical Epidemiology, 2012, 65, 1171-1180.	5.0	72
98	Reliability of shade selection using an intraoral spectrophotometer. Clinical Oral Investigations, 2012, 16, 945-949.	3.0	27
99	The Time-Dependent Bias and its Effect on Extra Length of Stay due to Nosocomial Infection. Value in Health, 2011, 14, 381-386.	0.3	89
100	Clinical outcomes of health-care-associated infections and antimicrobial resistance in patients admitted to European intensive-care units: a cohort study. Lancet Infectious Diseases, The, 2011, 11, 30-38.	9.1	344
101	Multistate modelling to estimate the excess length of stay associated with meticillin-resistant Staphylococcus aureus colonisation and infection in surgical patients. Journal of Hospital Infection, 2011, 78, 86-91.	2.9	48
102	Application of multistate models in hospital epidemiology: Advances and challenges. Biometrical Journal, 2011, 53, 332-350.	1.0	47
103	Mortality associated with in-hospital bacteraemia caused by Staphylococcus aureus: a multistate analysis with follow-up beyond hospital discharge. Journal of Antimicrobial Chemotherapy, 2011, 66, 381-386.	3.0	58
104	Burden of antimicrobial resistance in European hospitals: excess mortality and length of hospital stay associated with bloodstream infections due to Escherichia coli resistant to third-generation cephalosporins. Journal of Antimicrobial Chemotherapy, 2011, 66, 398-407.	3.0	198
105	Two Pitfalls in Survival Analyses of Time-Dependent Exposure: A Case Study in a Cohort of Oscar Nominees. American Statistician, 2010, 64, 205-211.	1.6	36
106	Efficient Risk Set Sampling when a Time-dependent Exposure Is Present. Methods of Information in Medicine, 2009, 48, 438-443.	1.2	35
107	Modeling the effect of time-dependent exposure on intensive care unit mortality. Intensive Care Medicine, 2009, 35, 826-832.	8.2	47
108	Statistical epidemic modeling with hospital outbreak data. Statistics in Medicine, 2008, 27, 6522-6531.	1.6	17

#	Article	IF	CITATIONS
109	The impact of timeâ€dependent bias in proportional hazards modelling. Statistics in Medicine, 2008, 27, 6439-6454.	1.6	76
110	An easy mathematical proof showed that time-dependent bias inevitably leads to biased effect estimation. Journal of Clinical Epidemiology, 2008, 61, 1216-1221.	5.0	145
111	Risk factors for the development of nosocomial pneumonia and mortality on intensive care units: application of competing risks models. Critical Care, 2008, 12, R44.	5.8	114
112	Environmental Contamination as an Important Route for the Transmission of the Hospital Pathogen VRE: Modeling and Prediction of Classical Interventions. Infectious Diseases: Research and Treatment, 2008, 1, IDRT.S809.	1.7	7
113	Accurate Variance Estimation for Prevalence Ratios. Methods of Information in Medicine, 2007, 46, 567-571.	1.2	9