
Mohamad Khazaei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3001350/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Translating mechanisms of neuroprotection, regeneration, and repair to treatment of spinal cord injury. Progress in Brain Research, 2015, 218, 15-54.	1.4	125
2	Human Oligodendrogenic Neural Progenitor Cells Delivered with Chondroitinase ABC Facilitate Functional Repair of Chronic Spinal Cord Injury. Stem Cell Reports, 2018, 11, 1433-1448.	4.8	81
3	Human Spinal Oligodendrogenic Neural Progenitor Cells Promote Functional Recovery After Spinal Cord Injury by Axonal Remyelination and Tissue Sparing. Stem Cells Translational Medicine, 2018, 7, 806-818.	3.3	76
4	The leading edge: Emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury. Stem Cells Translational Medicine, 2020, 9, 1509-1530.	3.3	76
5	GDNF rescues the fate of neural progenitor grafts by attenuating Notch signals in the injured spinal cord in rodents. Science Translational Medicine, 2020, 12, .	12.4	57
6	Induced Pluripotent Stem Cells for Traumatic Spinal Cord Injury. Frontiers in Cell and Developmental Biology, 2016, 4, 152.	3.7	56
7	Novel innovations in cell and gene therapies for spinal cord injury. F1000Research, 2020, 9, 279.	1.6	33
8	Examining the fundamental biology of a novel population of directly reprogrammed human neural precursor cells. Stem Cell Research and Therapy, 2019, 10, 166.	5.5	24
9	The Potential for iPS-Derived Stem Cells as a Therapeutic Strategy for Spinal Cord Injury: Opportunities and Challenges. Journal of Clinical Medicine, 2015, 4, 37-65.	2.4	21
10	Exogenous Neural Precursor Cell Transplantation Results in Structural and Functional Recovery in a Hypoxic-Ischemic Hemiplegic Mouse Model. ENeuro, 2018, 5, ENEURO.0369-18.2018.	1.9	20
11	Generation of Oligodendrogenic Spinal Neural Progenitor Cells From Human Induced Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 2017, 42, 2D.20.1-2D.20.14.	3.0	16
12	Severe-combined immunodeficient rats can be used to generate a model of perinatal hypoxic-ischemic brain injury to facilitate studies of engrafted human neural stem cells. PLoS ONE, 2018, 13, e0208105.	2.5	15
13	Generation of Definitive Neural Progenitor Cells from Human Pluripotent Stem Cells for Transplantation into Spinal Cord Injury. Methods in Molecular Biology, 2019, 1919, 25-41.	0.9	8
14	Regenerative replacement of neural cells for treatment of spinal cord injury. Expert Opinion on Biological Therapy, 2021, 21, 1-17.	3.1	7
15	The Protein Kinase Inhibitor Midostaurin Improves Functional Neurological Recovery and Attenuates Inflammatory Changes Following Traumatic Cervical Spinal Cord Injury. Biomolecules, 2021, 11, 972.	4.0	5
16	Administration of C5a Receptor Antagonist Improves the Efficacy of Human Induced Pluripotent Stem Cell–Derived Neural Stem/Progenitor Cell Transplantation in the Acute Phase of Spinal Cord Injury. Journal of Neurotrauma, 2022, 39, 667-682.	3.4	5
17	Neural Progenitor Cells Expressing Herpes Simplex Virus-Thymidine Kinase for Ablation Have Differential Chemosensitivity to Brivudine and Ganciclovir. Frontiers in Cellular Neuroscience, 2021, 15, 638021.	3.7	3
18	Cell–Cell Contact Mediates Gene Expression and Fate Choice of Human Neural Stem/Progenitor Cells. Cells, 2022, 11, 1741.	4.1	2