Shaun K Olsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3001192/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal Structures of an E1â€E2â€ubiquitin Thioester Mimetic Reveal Molecular Mechanisms of Transthioesterification. FASEB Journal, 2022, 36, .	0.5	0
2	Crystal structures of an E1–E2–ubiquitin thioester mimetic reveal molecular mechanisms of transthioesterification. Nature Communications, 2021, 12, 2370.	12.8	14
3	PRMT5-mediated arginine methylation activates AKT kinase to govern tumorigenesis. Nature Communications, 2021, 12, 3444.	12.8	39
4	A molecular sensor determines the ubiquitin substrate specificity of SARS-CoV-2 papain-like protease. Cell Reports, 2021, 36, 109754.	6.4	30
5	Development of a BCL-xL and BCL-2 dual degrader with improved anti-leukemic activity,. Nature Communications, 2021, 12, 6896.	12.8	56
6	Targeting SARS-CoV-2 Proteases for COVID-19 Antiviral Development. Frontiers in Chemistry, 2021, 9, 819165.	3.6	51
7	Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: A framework for anti–COVID-19 drug design. Science Advances, 2020, 6, .	10.3	344
8	Structural insights into E1 recognition and the ubiquitin-conjugating activity of the E2 enzyme Cdc34. Nature Communications, 2019, 10, 3296.	12.8	39
9	TGFβ promotes breast cancer stem cell self-renewal through an ILEI/LIFR signaling axis. Oncogene, 2019, 38, 3794-3811.	5.9	65
10	Structural basis for adenylation and thioester bond formation in the ubiquitin E1. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15475-15484.	7.1	45
11	UFM1-Activating Enzyme 5 (Uba5) Requires an Extension to Get the Job Done Right. Journal of Molecular Biology, 2019, 431, 479-482.	4.2	1
12	Molecular mechanism of a covalent allosteric inhibitor of SUMO E1 activating enzyme. Nature Communications, 2018, 9, 5145.	12.8	46
13	Crystal structure of a human ubiquitin E1–ubiquitin complex reveals conserved functional elements essential for activity. Journal of Biological Chemistry, 2018, 293, 18337-18352.	3.4	45
14	S.Âpombe Uba1-Ubc15 Structure Reveals a Novel Regulatory Mechanism of Ubiquitin E2 Activity. Molecular Cell, 2017, 65, 699-714.e6.	9.7	40
15	Structural insights into the mechanism and E2 specificity of the RBR E3 ubiquitin ligase HHARI. Nature Communications, 2017, 8, 211.	12.8	42
16	Domain alternation and active site remodeling are conserved structural features of ubiquitin E1. Journal of Biological Chemistry, 2017, 292, 12089-12099.	3.4	22
17	Crystal Structure of the Nephila clavipes Major Ampullate Spidroin 1A N-terminal Domain Reveals Plasticity at the Dimer Interface. Journal of Biological Chemistry, 2016, 291, 19006-19017.	3.4	16
18	Structure of a Ubiquitin E1-E2 Complex: Insights to E1-E2 Thioester Transfer. Molecular Cell, 2013, 49, 884-896.	9.7	128

SHAUN K OLSEN

#	Article	IF	CITATIONS
19	Plasticity in Interactions of Fibroblast Growth Factor 1 (FGF1) N Terminus with FGF Receptors Underlies Promiscuity of FGF1. Journal of Biological Chemistry, 2012, 287, 3067-3078.	3.4	37
20	Active site remodelling accompanies thioester bond formation in the SUMO E1. Nature, 2010, 463, 906-912.	27.8	172
21	No Requirement of <i>Trans</i> Presentations of IL-15 for Human CD8 T Cell Proliferation. Journal of Immunology, 2010, 185, 6041-6048.	0.8	25
22	Designed Semisynthetic Protein Inhibitors of Ub/Ubl E1 Activating Enzymes. Journal of the American Chemical Society, 2010, 132, 1748-1749.	13.7	73
23	Homodimerization Controls the Fibroblast Growth Factor 9 Subfamily's Receptor Binding and Heparan Sulfate-Dependent Diffusion in the Extracellular Matrix. Molecular and Cellular Biology, 2009, 29, 4663-4678.	2.3	44
24	Crystal Structure of the Interleukin-15·Interleukin-15 Receptor α Complex. Journal of Biological Chemistry, 2007, 282, 37191-37204.	3.4	89
25	Molecular Insights into the Klotho-Dependent, Endocrine Mode of Action of Fibroblast Growth Factor 19 Subfamily Members. Molecular and Cellular Biology, 2007, 27, 3417-3428.	2.3	457
26	Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism. Journal of Clinical Investigation, 2007, 117, 457-463.	8.2	338
27	Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain. Genes and Development, 2006, 20, 185-198.	5.9	171
28	Receptor Specificity of the Fibroblast Growth Factor Family. Journal of Biological Chemistry, 2006, 281, 15694-15700.	3.4	986
29	A protein canyon in the FGF–FGF receptor dimer selects from an à la carte menu of heparan sulfate motifs. Current Opinion in Structural Biology, 2005, 15, 506-516.	5.7	132
30	Analysis of Mutations in Fibroblast Growth Factor (FGF) and a Pathogenic Mutation in FGF Receptor (FGFR) Provides Direct Evidence for the Symmetric Two-End Model for FGFR Dimerization. Molecular and Cellular Biology, 2005, 25, 671-684.	2.3	58
31	Structural basis for fibroblast growth factor receptor activation. Cytokine and Growth Factor Reviews, 2005, 16, 107-137.	7.2	625
32	Insights into the molecular basis for fibroblast growth factor receptor autoinhibition and ligand-binding promiscuity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 935-940.	7.1	168
33	Fibroblast Growth Factor (FGF) Homologous Factors Share Structural but Not Functional Homology with FGFs. Journal of Biological Chemistry, 2003, 278, 34226-34236.	3.4	221