Jessica D Schiffman

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3001114/jessica-d-schiffman-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

72 5,928 35 76 g-index

77 6,591 6.8 6.34 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
72	Interfacing Electrospun Nanofibers with Microorganisms 2022 , 255-289		O
71	Epoxy Resin-Encapsulated Polymer Microparticles for Room-Temperature Cold Sprayable Coatings. <i>ACS Applied Materials & District Action (Control of the Action of the Action of the Action of the Action (Control of the Action of </i>	9.5	O
70	Electrospinning Fibers from Oligomeric Complex Coacervates: No Chain Entanglements Needed. <i>Macromolecules</i> , 2021 , 54, 5033-5042	5.5	2
69	Memristive Behavior of Mixed Oxide Nanocrystal Assemblies. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 21635-21644	9.5	3
68	Robust, small diameter hydrophilic nanofibers improve the flux of ultrafiltration membranes. <i>Industrial & Diamona Chemistry Research</i> , 2021 , 60, 9179-9188	3.9	4
67	Beyond the Single-Nozzle: Coaxial Electrospinning Enables Innovative Nanofiber Chemistries, Geometries, and Applications. <i>ACS Applied Materials & Enables Innovative Nanofiber Chemistries</i> , Geometries, and Applications. <i>ACS Applied Materials & Enables Innovative Nanofiber Chemistries</i> , Geometries, and Applications. <i>ACS Applied Materials & Enables Innovative Nanofiber Chemistries</i> , Geometries, and Applications. <i>ACS Applied Materials & Enables Innovative Nanofiber Chemistries</i> , Geometries, and Applications. <i>ACS Applied Materials & Enables Innovative Nanofiber Chemistries</i> , Geometries, and Applications. <i>ACS Applied Materials & Enables Innovative Nanofiber Chemistries</i> , Geometries, and Applications. <i>ACS Applied Materials & Enables Innovative Nanofiber Chemistries</i> , Geometries, Geometri	9.5	33
66	Localized characterization of brain tissue mechanical properties by needle induced cavitation rheology and volume controlled cavity expansion. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2021 , 114, 104168	4.1	2
65	Encapsulating bacteria in alginate-based electrospun nanofibers. <i>Biomaterials Science</i> , 2021 , 9, 4364-43	7 3 .4	9
64	Sustainable Living Filtration Membranes. Environmental Science and Technology Letters, 2020, 7, 213-218	811	11
63	High-Performance, UV-Curable Crosslinked Films via Grafting of Hydroxyethyl Methacrylate Methylene Malonate. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 4542-4548	3.9	2
62	A programmable chemical switch based on triggerable Michael acceptors. <i>Chemical Science</i> , 2020 , 11, 2103-2111	9.4	8
61	Spatially Organized Nanopillar Arrays Dissimilarly Affect the Antifouling and Antibacterial Activities of Escherichia coli and Staphylococcus aureus. <i>ACS Applied Nano Materials</i> , 2020 , 3, 977-984	5.6	8
60	Facile Postprocessing Alters the Permeability and Selectivity of Microbial Cellulose Ultrafiltration Membranes. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	1
59	In Vitro Reconstitution of an Intestinal Mucus Layer Shows That Cations and pH Control the Pore Structure That Regulates Its Permeability and Barrier Function. <i>ACS Applied Bio Materials</i> , 2020 , 3, 2897	- 2 909	4
58	Photodynamically Active Electrospun Fibers for Antibiotic-Free Infection Control <i>ACS Applied Bio Materials</i> , 2019 , 2, 4258-4270	4.1	16
57	Predicting the performance of pressure filtration processes by coupling computational fluid dynamics and discrete element methods. <i>Chemical Engineering Science</i> , 2019 , 208, 115162-115162	4.4	7
56	Antifouling Ultrafiltration Membranes with Retained Pore Size by Controlled Deposition of Zwitterionic Polymers and Poly(ethylene glycol). <i>Langmuir</i> , 2019 , 35, 1872-1881	4	14

(2016-2019)

55	Bacteria-Resistant, Transparent, Free-Standing Films Prepared from Complex Coacervates. <i>ACS Applied Bio Materials</i> , 2019 , 2, 3926-3933	4.1	16
54	Electrospinning Nanofibers from Chitosan/Hyaluronic Acid Complex Coacervates. Biomacromolecules, 2019 , 20, 4191-4198	6.9	39
53	Anionic Polymerization of Methylene Malonate for High-Performance Coatings. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 657-663	4.3	5
52	Polymer Particles with a Low Glass Transition Temperature Containing Thermoset Resin Enable Powder Coatings at Room Temperature. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 908	-916	12
51	Mechanical Properties and Concentrations of Poly(ethylene glycol) in Hydrogels and Brushes Direct the Surface Transport of Staphylococcus aureus. <i>ACS Applied Materials & Emptylococcus</i> , 2019, 11, 320-3	3 30 ⁵	17
50	Bacterial Adhesion Is Affected by the Thickness and Stiffness of Poly(ethylene glycol) Hydrogels. <i>ACS Applied Materials & Design Research</i> 2018, 10, 2275-2281	9.5	53
49	Gecko-Inspired Biocidal Organic Nanocrystals Initiated from a Pencil-Drawn Graphite Template. <i>Scientific Reports</i> , 2018 , 8, 11618	4.9	14
48	Current and Emerging Approaches to Engineer Antibacterial and Antifouling Electrospun Nanofibers. <i>Materials</i> , 2018 , 11,	3.5	48
47	Fouling-Resistant Hydrogels Prepared by the Swelling-Assisted Infusion and Polymerization of Dopamine. <i>ACS Applied Bio Materials</i> , 2018 , 1, 33-41	4.1	12
46	Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications. <i>Sensors and Actuators B: Chemical</i> , 2018 , 258, 1191-1214	8.5	157
45	Electrospinning Cargo-Containing Polyelectrolyte Complex Fibers: Correlating Molecular Interactions to Complex Coacervate Phase Behavior and Fiber Formation. <i>Macromolecules</i> , 2018 , 51, 8821-8832	5.5	12
44	Cross-platform mechanical characterization of lung tissue. <i>PLoS ONE</i> , 2018 , 13, e0204765	3.7	36
43	Bioinspired Photocatalytic Shark-Skin Surfaces with Antibacterial and Antifouling Activity via Nanoimprint Lithography. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 20055-20063	9.5	106
42	Complex Coacervation: Chemically Stable Fibers Electrospun from Aqueous Polyelectrolyte Solutions. <i>ACS Macro Letters</i> , 2017 , 6, 505-511	6.6	47
41	Ultrafiltration Membranes Enhanced with Electrospun Nanofibers Exhibit Improved Flux and Fouling Resistance. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 5724-5733	3.9	60
40	Antifouling Stripes Prepared from Clickable Zwitterionic Copolymers. <i>Langmuir</i> , 2017 , 33, 7028-7035	4	22
39	Antimicrobial Activity of Silver Ions Released from Zeolites Immobilized on Cellulose Nanofiber Mats. <i>ACS Applied Materials & Description</i> (2016), 8, 3032-40	9.5	85
38	Electrospinning chitosan/poly(ethylene oxide) solutions with essential oils: Correlating solution rheology to nanofiber formation. <i>Carbohydrate Polymers</i> , 2016 , 139, 131-8	10.3	7 ²

37	Preliminary study on mitigating steel reinforcement corrosion with bioactive agent. <i>Cement and Concrete Composites</i> , 2016 , 69, 9-17	8.6	6
36	Polyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli. <i>Materials</i> , 2016 , 9,	3.5	16
35	Underwater Superoleophobic Surfaces Prepared from Polymer Zwitterion/Dopamine Composite Coatings. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500521	4.6	82
34	Graphene-based microfluidics for serial crystallography. <i>Lab on A Chip</i> , 2016 , 16, 3082-96	7.2	43
33	Antifouling Electrospun Nanofiber Mats Functionalized with Polymer Zwitterions. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 27585-27593	9.5	62
32	Green materials science and engineering reduces biofouling: approaches for medical and membrane-based technologies. <i>Frontiers in Microbiology</i> , 2015 , 6, 196	5.7	20
31	Mechanics of intact bone marrow. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2015 , 50, 299-307	4.1	106
30	Thermal-Responsive Behavior of a Cell Compatible Chitosan/Pectin Hydrogel. <i>Biomacromolecules</i> , 2015 , 16, 1837-43	6.9	50
29	Scaling Up Nature: Large Area Flexible Biomimetic Surfaces. <i>ACS Applied Materials & Discrete Surfaces</i> , 2015 , 7, 23439-44	9.5	29
28	Fewer Bacteria Adhere to Softer Hydrogels. ACS Applied Materials & amp; Interfaces, 2015, 7, 19562-9	9.5	73
27	Encapsulation of cinnamaldehyde into nanostructured chitosan films. <i>Journal of Applied Polymer Science</i> , 2015 , 132, n/a-n/a	2.9	17
26	Characterization of self-assembled polyelectrolyte complex nanoparticles formed from chitosan and pectin. <i>Langmuir</i> , 2014 , 30, 3441-7	4	84
25	Electrospinning an essential oil: cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers. <i>Carbohydrate Polymers</i> , 2014 , 113, 561-8	10.3	168
24	Designing electrospun nanofiber mats to promote wound healing - a review. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 4531-4541	7.3	339
23	Phosphate salts facilitate the electrospinning of hyaluronic acid fiber mats. <i>Journal of Materials Science</i> , 2013 , 48, 7805-7811	4.3	7
22	Crosslinking poly(allylamine) fibers electrospun from basic and acidic solutions. <i>Journal of Materials Science</i> , 2013 , 48, 7856-7862	4.3	8
21	Polycation-Tethered Micelles as Immobilized Detergents for NAPL Remediation. <i>ACS Symposium Series</i> , 2013 , 97-109	0.4	1
20	Nanofibers in thin-film composite membrane support layers: Enabling expanded application of forward and pressure retarded osmosis. <i>Desalination</i> , 2013 , 308, 73-81	10.3	125

19	Nanomanufacturing of biomaterials. <i>Materials Today</i> , 2012 , 15, 478-485	21.8	49
18	Biodegradable polymer (PLGA) coatings featuring cinnamaldehyde and carvacrol mitigate biofilm formation. <i>Langmuir</i> , 2012 , 28, 13993-9	4	61
17	Electrospinning of hyaluronic acid nanofibers from aqueous ammonium solutions. <i>Carbohydrate Polymers</i> , 2012 , 87, 926-929	10.3	89
16	Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. <i>Environmental Science & Environmental Science & Environment</i>	10.3	430
15	Biocidal activity of plasma modified electrospun polysulfone mats functionalized with polyethyleneimine-capped silver nanoparticles. <i>Langmuir</i> , 2011 , 27, 13159-64	4	64
14	Antibacterial activity of electrospun polymer mats with incorporated narrow diameter single-walled carbon nanotubes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2011 , 3, 462-8	9.5	102
13	Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. <i>Journal of Membrane Science</i> , 2011 , 367, 340-352	9.6	489
12	Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. <i>Environmental Science & Technology</i> , 2011 , 45, 3672-9	10.3	278
11	Carbon black immobilized in electrospun chitosan membranes. Carbohydrate Polymers, 2011, 84, 1252-	1 2157 3	23
10	High performance thin-film composite forward osmosis membrane. <i>Environmental Science & Environmental Science & Technology</i> , 2010 , 44, 3812-8	10.3	738
9	Chitin and chitosan: Transformations due to the electrospinning process. <i>Polymer Engineering and Science</i> , 2009 , 49, 1918-1928	2.3	52
8	Solid state characterization of Ethitin from Vanessa cardui Linnaeus wings. <i>Materials Science and Engineering C</i> , 2009 , 29, 1370-1374	8.3	22
7	The natural transparency and piezoelectric response of the Greta oto butterfly wing. <i>Integrative Biology (United Kingdom)</i> , 2009 , 1, 324-9	3.7	42
6	Carboxymethyl chitosan as a matrix material for platinum, gold, and silver nanoparticles. <i>Biomacromolecules</i> , 2008 , 9, 2682-5	6.9	169
5	A Review: Electrospinning of Biopolymer Nanofibers and their Applications. <i>Polymer Reviews</i> , 2008 , 48, 317-352	14	619
4	Cross-linking chitosan nanofibers. <i>Biomacromolecules</i> , 2007 , 8, 594-601	6.9	345
3	One-step electrospinning of cross-linked chitosan fibers. <i>Biomacromolecules</i> , 2007 , 8, 2665-7	6.9	179
2	Optimizing the Packing Density and Chemistry of Cellulose Nanofilters for High-Efficiency Particulate Removal. <i>Industrial & Engineering Chemistry Research</i> ,	3.9	2

Nanofibers: Electrospinning of Biopolymers5201-5225