Andrea Li Bassi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3001093/publications.pdf

Version: 2024-02-01

161	6,176	42	73
papers	citations	h-index	g-index
165	165	165	7795
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Density,sp3fraction, and cross-sectional structure of amorphous carbon films determined by x-ray reflectivity and electron energy-loss spectroscopy. Physical Review B, 2000, 62, 11089-11103.	3.2	506
2	Hierarchical TiO ₂ Photoanode for Dye-Sensitized Solar Cells. Nano Letters, 2010, 10, 2562-2567.	9.1	331
3	Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: The influence of size and stoichiometry. Journal of Applied Physics, 2005, 98, 074305.	2.5	272
4	Cluster-Beam Deposition andin situCharacterization of Carbyne-Rich Carbon Films. Physical Review Letters, 2002, 89, 285506.	7.8	240
5	Raman spectroscopy characterization of TiO2 rutile nanocrystals. Physical Review B, 2007, 75, .	3.2	229
6	Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide. Journal of Applied Physics, 2014, 115, .	2.5	198
7	Chemical and thermal stability of carbyne-like structures in cluster-assembled carbon films. Physical Review B, 2004, 69, .	3.2	150
8	Near-edge x-ray absorption fine structure and Raman characterization of amorphous and nanostructured carbon films. Journal of Applied Physics, 1999, 85, 7159-7167.	2.5	131
9	Nanostructured tungsten oxide with controlled properties: Synthesis and Raman characterization. Thin Solid Films, 2007, 515, 6465-6469.	1.8	128
10	Hierarchically organized nanostructured TiO ₂ for photocatalysis applications. Nanotechnology, 2009, 20, 015604.	2.6	122
11	Influence of Cumulenic Chains on the Vibrational and Electronic Properties ofspâ^'sp2Amorphous Carbon. Physical Review Letters, 2007, 98, 216103.	7.8	117
12	Raman spectroscopy of Biâ€∓e thin films. Journal of Raman Spectroscopy, 2008, 39, 205-210.	2.5	109
13	Raman and SERS investigation of isolated sp carbon chains. Chemical Physics Letters, 2006, 417, 78-82.	2.6	102
14	Density, sp 3 content and internal layering of DLC films by X-ray reflectivity and electron energy loss spectroscopy. Diamond and Related Materials, 2000, 9, 771-776.	3.9	94
15	Thermoelectric properties of Bi–Te films with controlled structure and morphology. Journal of Applied Physics, 2009, 105, .	2.5	93
16	Bonding and mechanical properties of ultrathin diamond-like carbon films. Applied Physics Letters, 2002, 81, 3804-3806.	3.3	85
17	Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires. Beilstein Journal of Nanotechnology, 2015, 6, 480-491.	2.8	83
18	Pulsed laser deposition of Bi2Te3 thermoelectric films. Applied Surface Science, 2007, 254, 1249-1254.	6.1	80

#	Article	IF	CITATIONS
19	Synthesis and characterization of cluster-assembled carbon thin films. Journal of Applied Physics, 1997, 82, 5793-5798.	2.5	75
20	Synthesis of carbon films with controlled nanostructure by separation of neutral clusters in supersonic beams. Chemical Physics Letters, 1999, 300, 633-638.	2.6	73
21	Growth regimes in pulsed laser deposition of aluminum oxide films. Applied Physics A: Materials Science and Processing, 2008, 93, 765-769.	2.3	73
22	Synthesis and characterization of tungsten and tungsten oxide nanostructured films. Catalysis Today, 2006, 116, 69-73.	4.4	72
23	Pulsed laser deposition of tungsten and tungsten oxide thin films with tailored structure at the nano- and mesoscale. Applied Surface Science, 2007, 253, 8130-8135.	6.1	70
24	Structural and functional properties of Al:ZnO thin films grown by Pulsed Laser Deposition at room temperature. Thin Solid Films, 2012, 520, 4707-4711.	1.8	70
25	Low-frequency modes in the Raman spectrum of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>s</mml:mi><mml:mi> <mml:mi> <mml:mi< td=""><td>,3,2 ,s<7mml:π</td><td>ni⁶⁹mml:ms</td></mml:mi<></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mrow></mml:math>	,3,2 ,s<7mml:π	ni ⁶⁹ mml:ms
26	Hyperbranched Quasi-1D Nanostructures for Solid-State Dye-Sensitized Solar Cells. ACS Nano, 2013, 7, 10023-10031.	14.6	65
27	Surface electronic and structural properties of nanostructured titanium oxide grown by pulsed laser deposition. Surface Science, 2011, 605, 333-340.	1.9	62
28	Photocatalytic behavior of different titanium dioxide layers. Thin Solid Films, 2007, 515, 6309-6313.	1.8	59
29	Recovery of local density of states using scanning tunneling spectroscopy. Physical Review B, 2009, 79,	3.2	56
30	Charge Transfer and Vibrational Structure of sp-Hybridized Carbon Atomic Wires Probed by Surface Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 12836-12843.	3.1	56
31	Integration of Transparent Supercapacitors and Electrodes Using Nanostructured Metallic Glass Films for Wirelessly Rechargeable, Skin Heat Patches. Nano Letters, 2020, 20, 4872-4881.	9.1	56
32	Structure-dependent optical and electrical transport properties of nanostructured Al-doped ZnO. Nanotechnology, 2012, 23, 365706.	2.6	55
33	Structural and gas-sensing characterization of tungsten oxide nanorods and nanoparticles. Sensors and Actuators B: Chemical, 2011, 153, 340-346.	7.8	53
34	Libraries of cluster-assembled titania films for chemical sensing. Applied Physics Letters, 2005, 87, 103108.	3.3	52
35	Pulsed laser deposition of single-layer MoS $<$ sub $>$ 2 $<$ /sub $>$ on Au(111): from nanosized crystals to large-area films. Nanoscale Advances, 2019, 1, 643-655.	4.6	52
36	Stabilization of linear carbon structures in a solid Ag nanoparticle assembly. Applied Physics Letters, 2007, 90, 013111.	3.3	50

#	Article	IF	CITATIONS
37	Integration of plasmonic Au nanoparticles in TiO2 hierarchical structures in a single-step pulsed laser co-deposition. Materials and Design, 2018, 156, 311-319.	7.0	49
38	Engineering plasmonic nanostructured surfaces by pulsed laser deposition. Applied Surface Science, 2018, 434, 1064-1073.	6.1	47
39	Tuning of Electrical and Optical Properties of Highly Conducting and Transparent Ta-Doped TiO ₂ Polycrystalline Films. Journal of Physical Chemistry C, 2015, 119, 6988-6997.	3.1	46
40	Melting in metallic Sn nanoparticles studied by surface Brillouin scattering and synchrotron-x-ray diffraction. Physical Review B, 1999, 59, R15601-R15604.	3.2	45
41	Scanning tunneling spectroscopy of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>Fe</mml:mtext><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mr 2009,="" 79<="" b.="" physical="" review="" th=""><th>ന്<mark>ൽ:2</mark>m>00</th><th>1⁴³mml:mn></th></mr></mml:mrow></mml:mrow></mml:mrow></mml:math>	ന് <mark>ൽ:2</mark> m>00	1 ⁴³ mml:mn>
42	Vibrational–Electrical Properties Relationship in Donor-Doped TiO ₂ by Raman Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 18878-18886.	3.1	43
43	Disclosing the Early Stages of Electrochemical Anion Intercalation in Graphite by a Combined Atomic Force Microscopy/Scanning Tunneling Microscopy Approach. Journal of Physical Chemistry C, 2016, 120, 6088-6093.	3.1	43
44	Direct observation of the basic mechanisms of Pd island nucleation on Au(111). Physical Review B, 2009, 79, .	3.2	42
45	A Simple Method for the Synthesis of Silicon Carbide Nanorods. Journal of Nanoscience and Nanotechnology, 2002, 2, 453-456.	0.9	41
46	sp Carbon chain interaction with silver nanoparticles probed by Surface Enhanced Raman Scattering. Chemical Physics Letters, 2009, 478, 45-50.	2.6	40
47	Bulk Cr tips for scanning tunneling microscopy and spin-polarized scanning tunneling microscopy. Applied Physics Letters, 2007, 91, .	3.3	39
48	Nanostructured Ag ₄ O ₄ films with enhanced antibacterial activity. Nanotechnology, 2008, 19, 475602.	2.6	38
49	Leaving the fullerene road: presence and stability of sp chains in sp2carbon clusters and cluster-assembled solids. New Journal of Physics, 2005, 7, 81-81.	2.9	37
50	TiO ₂ Nanotubes: Interdependence of Substrate Grain Orientation and Growth Rate. ACS Applied Materials & Diterfaces, 2015, 7, 1662-1668.	8.0	37
51	Titanium oxide nanostructured films by reactive pulsed laser deposition. Applied Surface Science, 2009, 255, 5334-5337.	6.1	34
52	Nanostructured high valence silver oxide produced by pulsed laser deposition. Applied Surface Science, 2009, 255, 5248-5251.	6.1	34
53	TiO ₂ Nanotubes: Interdependence of Substrate Grain Orientation and Growth Characteristics. Journal of Physical Chemistry C, 2012, 116, 384-392.	3.1	34
54	<tex>\$hboxTeO_2\$</tex> -Based Glasses Containing <tex>\$hboxNb_2hboxO_5\$</tex> , <tex>\$hboxTiO_2\$</tex> , and <tex>\$hboxWO_3\$</tex> for Discrete Raman Fiber Amplification. IEEE Photonics Technology Letters, 2004, 16, 1011-1013.	2.5	33

#	Article	IF	CITATIONS
55	Atomic corrugation in scanning tunneling microscopy images of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>Fe</mml:mtext><mml:mrow><mml:mo>(</mml:mo><mml:mrow>< Physical Review B, 2010, 81, .</mml:mrow></mml:mrow></mml:mrow></mml:math>	mml:mn>0)01 ³³ mml:mn
56	Mesoscopic elastic properties of cluster-assembled carbon films. Europhysics Letters, 1998, 42, 431-436.	2.0	32
57	Hydrogen-treated hierarchical titanium oxide nanostructures for photoelectrochemical water splitting. Solar Energy Materials and Solar Cells, 2017, 169, 19-27.	6.2	32
58	Novel class of nanostructured metallic glass films with superior and tunable mechanical properties. Acta Materialia, 2021, 213, 116955.	7.9	32
59	Photocurrent study of all-printed photodetectors on paper made of different transition metal dichalcogenide nanosheets. Flexible and Printed Electronics, 2018, 3, 034005.	2.7	31
60	Silicon algae with carbon topping as thin-film anodes for lithium-ion microbatteries by a two-step facile method. Journal of Power Sources, 2015, 274, 252-259.	7.8	30
61	Nature of Point Defects in Single-Layer MoS ₂ Supported on Au(111). Journal of Physical Chemistry C, 2020, 124, 12424-12431.	3.1	30
62	Acoustic phonon propagation and elastic properties of cluster-assembled carbon films investigated by Brillouin light scattering. Physical Review B, 2001, 64, .	3.2	29
63	Syngas Evolution from CO ₂ Electroreduction by Porous Au Nanostructures. ACS Applied Energy Materials, 2020, 3, 4658-4668.	5.1	29
64	Structure modulated charge transfer in carbon atomic wires. Scientific Reports, 2019, 9, 1648.	3.3	26
65	Controlling the plasmonic properties of titanium nitride thin films by radiofrequency substrate biasing in magnetron sputtering. Applied Surface Science, 2021, 554, 149543.	6.1	25
66	Investigation of confined acoustic phonons of tin nanoparticles during melting. Europhysics Letters, 2001, 56, 386-392.	2.0	24
67	Nanostructured Pd barrier for low methanol crossover DMFC. International Journal of Hydrogen Energy, 2014, 39, 2801-2811.	7.1	24
68	Scanning tunneling microscopy and Raman spectroscopy of polymeric sp–sp ² carbon atomic wires synthesized on the Au(111) surface. Nanoscale, 2019, 11, 18191-18200.	5.6	24
69	Pulsed laser deposition of two-dimensional ZnO nanocrystals on Au(111): growth, surface structure and electronic properties. Nanotechnology, 2016, 27, 475703.	2.6	23
70	Microscopic Analysis of the Different Perchlorate Anions Intercalation Stages of Graphite. Journal of Physical Chemistry C, 2017, 121, 14246-14253.	3.1	23
71	Title is missing!. European Physical Journal B, 2002, 25, 269-280.	1.5	23
72	Evolution of the graphite surface in phosphoric acid: an AFM and Raman study. Beilstein Journal of Nanotechnology, 2016, 7, 1878-1884.	2.8	22

#	Article	IF	CITATIONS
73	Different W cluster deposition regimes in pulsed laser ablation observed by in situ scanning tunneling microscopy. Surface Science, 2007, 601, 1892-1897.	1.9	21
74	Self-assembly of trimetallic nitride template fullerenes on surfaces studied by STM. Surface Science, 2007, 601, 2750-2755.	1.9	21
75	Excitation Wavelength- and Medium-Dependent Photoluminescence of Reduced Nanostructured TiO ₂ Films. Journal of Physical Chemistry C, 2019, 123, 11292-11303.	3.1	21
76	Structure and mechanical properties of low stress tetrahedral amorphous carbon films prepared by pulsed laser deposition. European Physical Journal B, 2002, 25, 269-280.	1.5	20
77	Dynamic light scattering from acoustic modes in single-walled carbon nanotubes. Physical Review B, 2003, 67, .	3.2	20
78	Elastic constants and structural properties of nanometre-thick diamond-like carbon films. Diamond and Related Materials, 2002, 11, 1062-1067.	3.9	19
79	Controlling the Electrical Properties of Undoped and Taâ€Doped TiO ₂ Polycrystalline Films via Ultraâ€Fastâ€Annealing Treatments. Advanced Electronic Materials, 2016, 2, 1500316.	5.1	19
80	Highly sensitive detection of estradiol by a SERS sensor based on TiO ₂ covered with gold nanoparticles. Beilstein Journal of Nanotechnology, 2020, 11, 1026-1035.	2.8	19
81	Nanostructured carbon films from supersonic cluster beam deposition: structure and morphology. European Physical Journal D, 1999, 9, 63-68.	1.3	18
82	Integrated Au/TiO2 Nanostructured Photoanodes for Photoelectrochemical Organics Degradation. Catalysts, 2019, 9, 340.	3.5	18
83	New Mechanism for Long Photoâ€Induced Enhanced Raman Spectroscopy in Au Nanoparticles Embedded in TiO ₂ . Small, 2022, 18, .	10.0	17
84	Gas exposure and thermal stability of linear carbon chains in nanostructured carbon films investigated by in situ Raman spectroscopy. Carbon, 2004, 42, 1103-1106.	10.3	16
85	Strain effect on local electronic properties of Fe nanoislands grown on Au(111). Physical Review B, 2011, 83, .	3.2	16
86	Nanoscale Analysis of a Hierarchical Hybrid Solar Cell in 3D. Advanced Functional Materials, 2014, 24, 3043-3050.	14.9	16
87	Electrochemical Properties of Transparent Conducting Films of Tantalum-Doped Titanium Dioxide. Electrochimica Acta, 2017, 232, 44-53.	5.2	16
88	Solvent-dependent termination, size and stability in polyynes synthesized <i>via</i> laser ablation in liquids. Physical Chemistry Chemical Physics, 2020, 22, 26312-26321.	2.8	16
89	Time-of-flight analysis of neutral cluster beams through detection of charged particles produced by cluster impact on a channeltron. Review of Scientific Instruments, 1998, 69, 1647-1649.	1.3	15
90	Growth of multi-wall and single-wall carbon nanotubes with in situ high vacuum catalyst deposition. Carbon, 2004, 42, 440-443.	10.3	15

#	Article	IF	CITATIONS
91	Mesoporous Si and Multi-Layered Si/C Films by Pulsed Laser Deposition as Li-lon Microbattery Anodes. Journal of the Electrochemical Society, 2015, 162, A1816-A1822.	2.9	15
92	A combined morphological and electrochemical characterization of carbon electrodes in vanadium redox flow batteries: Insights into positive and negative electrode performance. Electrochimica Acta, 2020, 329, 135143.	5.2	15
93	Nucleation and growth mechanisms of Fe on Au(111) in the sub-monolayer regime. Surface Science, 2012, 606, 702-710.	1.9	14
94	Nanostructured Ag4O4 thin films produced by ion beam oxidation of silver. Applied Surface Science, 2013, 266, 161-169.	6.1	14
95	Enhancing light harvesting by hierarchical functionally graded transparent conducting Al-doped ZnO nano- and mesoarchitectures. Solar Energy Materials and Solar Cells, 2014, 128, 248-253.	6.2	14
96	Hyperbranched Quasi-1D TiO ₂ Nanostructure for Hybrid Organic–Inorganic Solar Cells. ACS Applied Materials & Diterfaces, 2015, 7, 7451-7455.	8.0	14
97	Structural, Electronic, and Vibrational Properties of a Two-Dimensional Graphdiyne-like Carbon Nanonetwork Synthesized on Au(111): Implications for the Engineering of sp-sp ² Carbon Nanostructures. ACS Applied Nano Materials, 2020, 3, 12178-12187.	5.0	14
98	Nanoporous Titanium (Oxy)nitride Films as Broadband Solar Absorbers. ACS Applied Materials & Amp; Interfaces, 2022, 14, 18453-18463.	8.0	14
99	Highly Performing Al:ZnO Thin Films Grown by Pulsed Laser Deposition at Room Temperature. Nanoscience and Nanotechnology Letters, 2013, 5, 484-486.	0.4	13
100	Preparation and optimization of TiO2 photoanodes fabricated by pulsed laser deposition for photoelectrochemical water splitting. Journal of Solid State Electrochemistry, 2017, 21, 3139-3154.	2.5	13
101	Size-selected polyynes synthesised by submerged arc discharge in water. Chemical Physics Letters, 2020, 740, 137054.	2.6	13
102	Island Organization of TiO2Hierarchical Nanostructures Induced by Surface Wetting and Drying. Langmuir, 2011, 27, 1935-1941.	3.5	12
103	Tuning electrical properties of hierarchically assembled Al-doped ZnO nanoforests by room temperature Pulsed Laser Deposition. Thin Solid Films, 2015, 594, 12-17.	1.8	12
104	Photocatalytic Activity of Nanotubular TiO2 Films Obtained by Anodic Oxidation: A Comparison in Gas and Liquid Phase. Materials, 2018, 11, 488.	2.9	12
105	Photo-induced production of sp-hybridized carbon species from Ag-coated polytetrafluoroethylene (PTFE). Carbon, 2005, 43, 1337-1339.	10.3	11
106	Light management in TiO ₂ thin films integrated with Au plasmonic nanoparticles. Semiconductor Science and Technology, 2020, 35, 035016.	2.0	11
107	Hydrophilic Character of Single-Layer MoS ₂ Grown on Ag(111). Journal of Physical Chemistry C, 2021, 125, 9479-9485.	3.1	11
108	Measurement of the elastic constants of nanometer-thick films. Materials Science and Engineering C, 2002, 19, 201-204.	7.3	10

#	Article	IF	Citations
109	Inelastic light scattering from magnetically aligned single-walled carbon nanotubes and estimate of their two-dimensional Young's modulus. Diamond and Related Materials, 2003, 12, 806-810.	3.9	10
110	In situ STM of pulsed laser nanostructured deposits: First stages of film formation. Applied Surface Science, 2007, 253, 7917-7921.	6.1	10
111	Auâ^'Ag Template Stripped Pattern for Scanning Probe Investigations of DNA Arrays Produced by Dip Pen Nanolithography. Langmuir, 2008, 24, 13212-13217.	3. 5	10
112	Energetic regimes and growth mechanisms of pulsed laser deposited Pd clusters on Au(111) investigated byin situscanning tunneling microscopy. Physical Review B, 2011, 84, .	3.2	10
113	Two-dimensional TiO _{<i>x</i>} nanostructures on Au(111): a scanning tunneling microscopy and spectroscopy investigation. 2D Materials, 2015, 2, 045011.	4.4	10
114	High-performance flexible nanoporous Si-carbon nanotube paper anodes for micro-battery applications. Nanotechnology, 2016, 27, 245401.	2.6	10
115	Interaction between femtosecond laser pulses and CdSxSe1 \hat{a} °xquantum dots in glasses. Physical Review B, 2007, 76, .	3.2	9
116	Self-assembly and electronic effects of Er ₃ N@C ₈₀ and Sc ₃ N@C ₈₀ on Au(111) and Ag/Si(111) surfaces. Journal of Physics: Conference Series, 2008, 100, 052080.	0.4	9
117	Inelastic light scattering: a multiscale characterization approach to vibrational, structural and thermo-mechanical properties of nanostructured materials. Applied Surface Science, 2004, 226, 271-281.	6.1	8
118	In situ synthesis of polyynes in a polymer matrix via pulsed laser ablation in a liquid. Materials Advances, 2020, 1, 2729-2736.	5.4	8
119	Ultrafast spectroscopic imaging of exfoliated graphene. Physica Status Solidi (B): Basic Research, 2012, 249, 2497-2499.	1.5	7
120	Growth and electronic properties of Ti nanoislands on Au(111). Surface Science, 2014, 619, 77-82.	1.9	7
121	Room temperature fabrication of silicon nanocrystals by pulsed laser deposition. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	7
122	Chemical Bonds and Charge-Transfer Dynamics of a Dye–Hierarchical-TiO ₂ Hybrid Interface. Journal of Physical Chemistry C, 2015, 119, 8671-8680.	3.1	7
123	Optical and electronic properties of transparent conducting Ta:TiO2 thin and ultra-thin films: the effect of doping and thickness. Materials Advances, 0, , .	5.4	7
124	In situ surface-enhanced Raman spectroscopy to investigate polyyne formation during pulsed laser ablation in liquid. Carbon, 2022, 189, 219-229.	10.3	7
125	Brillouin light scattering investigation of cluster-assembled carbon films: acoustic phonon propagation and elastic properties. Diamond and Related Materials, 2003, 12, 856-860.	3.9	6
126	Interface-Driven Assembly of Pentacene/MoS ₂ Lateral Heterostructures. Journal of Physical Chemistry C, 2022, 126, 1132-1139.	3.1	6

#	Article	IF	Citations
127	Acoustic phonon propagation and elastic properties of nano-sized carbon films investigated by Brillouin light scattering. Thin Solid Films, 2002, 420-421, 300-305.	1.8	5
128	Tuning the photoelectrochemical properties of hierarchical TiO2 nanostructures by control of pulsed laser deposition and annealing in reducing conditions. International Journal of Hydrogen Energy, 2017, 42, 26639-26651.	7.1	5
129	Tunable optical and plasmonic response of Au nanoparticles embedded in Ta-doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>TiO</mml:mi><mml:mn>2<td>nn2.4/mml</td><td>:msub></td></mml:mn></mml:msub></mml:math>	nn 2.4 /mml	:m s ub>
130	Brillouin scattering of cluster-assembled carbon films. Carbon, 1998, 36, 535-538.	10.3	4
131	The origin of the redshift in Brillouin spectra of silica films containing tin nanoparticles. European Physical Journal B, 2000, 18, 31-38.	1.5	4
132	Pulsed Laser Deposition of Silicon Nanostructures. Materials Research Society Symposia Proceedings, 2011, 1322, 141.	0.1	4
133	Fabrication of Nano-engineered Transparent Conducting Oxides by Pulsed Laser Deposition. Journal of Visualized Experiments, 2013, , e50297.	0.3	4
134	Electronic and magnetic properties of bulk Cr tips for scanning tunneling spectroscopy. Physical Review B, 2013, 87, .	3.2	4
135	Mesoporous Silicon Nanostructures by Pulsed Laser Deposition as Li-Ion Battery Anodes. ECS Transactions, 2014, 62, 107-115.	0.5	4
136	Reactive Dissolution of Organic Nanocrystals at Controlled pH. ChemNanoMat, 2020, 6, 567-575.	2.8	4
137	Brillouin scattering investigation of melting in Sn nanoparticles. Materials Science and Engineering C, 2001, 15, 41-43.	7.3	3
138	A Simple Method for the Synthesis of Silicon Carbide Nanorods. Journal of Nanoscience and Nanotechnology, 2002, 2, 453-456.	0.9	3
139	High resolution X-ray scattering from nanotechnology materials. Applied Surface Science, 2001, 182, 202-208.	6.1	2
140	Damped and overdamped acoustic phonons in tin nanoparticles detected by low frequency Raman scattering. Materials Science and Engineering C, 2001, 15, 21-23.	7.3	2
141	Tuning Hierarchical Cluster Assembly in Pulsed Laser Deposition of Al-doped ZnO. Materials Research Society Symposia Proceedings, 2013, 1497, 1.	0.1	2
142	Morphology-driven electrical and optical properties in graded hierarchical transparent conducting Al:ZnO. Materials Research Society Symposia Proceedings, 2014, 1699, 13.	0.1	2
143	Driving Organic Nanocrystals Dissolution Through Electrochemistry. ChemistryOpen, 2021, 10, 748-755.	1.9	2
144	Steric hindrance in the on-surface synthesis of diethynyl-linked anthracene polymers. Physical Chemistry Chemical Physics, 2022, 24, 13616-13624.	2.8	2

#	Article	IF	CITATIONS
145	Cluster beam deposition: a novel approach to the synthesis of nanostructured materials. AIP Conference Proceedings, 1997, , .	0.4	1
146	Note: Fabrication and characterization of molybdenum tips for scanning tunneling microscopy and spectroscopy. Review of Scientific Instruments, 2015, 86, 016112.	1.3	1
147	Assembly and Soldering Procedure of Nonstabilized YBCO Coils for 1000 A SFCL. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-4.	1.7	1
148	Nanostructured TiO2 Thin Films for Phosphoproteomics Studies with MALDI Mass Spectrometry. Methods in Molecular Biology, 2011, 790, 173-181.	0.9	1
149	Nanostructured carbon films from supersonic cluster beam deposition: structure and morphology. , 1999, , 63-68.		1
150	<title>Measurement of the elastic constants of nanometric films</title> ., 2001, , .		0
151	Structural evolution and acoustic phonon behavior in crystalline PTFE latex films. Materials Research Society Symposia Proceedings, 2003, 779, 781.	0.1	0
152	Structural Evolution and Acoustic Phonon Behavior in Crystalline PTFE Latex Films. Materials Research Society Symposia Proceedings, 2003, 778, 881/W7.8.1.	0.1	0
153	Inelastic light scattering for the investigations of nano- and meso-structures. European Physical Journal Special Topics, 2005, 129, 3-9.	0.2	0
154	Pulsed Laser Deposition of Cluster-Assembled Thin Films with Controlled Nanostructure. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	0
155	Nanoscale and Mesoscale Properties of Nanostructured Carbon Films. Fullerenes Nanotubes and Carbon Nanostructures, 2005, 13, 199-210.	2.1	0
156	Elastic and Structural Properties of Carbon Materials Investigated by Brillouin Light Scattering. , 0, , 153-174.		0
157	Pulsed Laser Deposition and In Situ Scanning Tunneling Microscopy of Pd clusters supported on alumina. Materials Research Society Symposia Proceedings, 2011, 1351, 116701.	0.1	0
158	Fe nanoparticles on ZnSe: Reversible temperature dependence of the surface barrier potential. Physical Review B, 2012, 85, .	3.2	0
159	NANOTECNOLOGIE PER CATTURARE LA LUCE. Istituto Lombardo - Accademia Di Scienze E Lettere - Rendiconti Di Scienze, 2015, , .	0.0	0
160	Synthesis and Characterization of Carbynoid Structures in Cluster-Assembled Carbon Films. , 2005, , 15-36.		0
161	Compared EC-AFM Analysis of Laser-Induced Graphene and Graphite Electrodes in Sulfuric Acid Electrolyte. Molecules, 2021, 26, 7333.	3.8	0