Zhiwei Qiao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3000546/zhiwei-qiao-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

126 60 4,245 37 h-index g-index citations papers 5,466 136 5.92 7.9 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
126	Machine learning and in-silico screening of metal b rganic frameworks for O2/N2 dynamic adsorption and separation. <i>Chemical Engineering Journal</i> , 2022 , 427, 131604	14.7	9
125	Free-standing homochiral 2D monolayers by exfoliation of molecular crystals <i>Nature</i> , 2022 , 602, 606-6	5 15 0.4	14
124	Molecular-fingerprint machine-learning-assisted design and prediction for high-performance MOFs for capture of NMHCs from air 2022 , 1, 100026		2
123	Machine-Learning-Assisted High-Throughput Computational Screening of Metal Drganic Framework Membranes for Hydrogen Separation. <i>Chemical Engineering Journal</i> , 2022 , 136783	14.7	1
122	Pore Distortion in a Metal-Organic Framework for Regulated Separation of Propane and Propylene. Journal of the American Chemical Society, 2021, 143, 19300-19305	16.4	7
121	Mechanochemical synthesis of a robust cobalt-based metal®rganic framework for adsorption separation methane from nitrogen. <i>Chemical Engineering Journal</i> , 2021 , 133876	14.7	0
120	Recent advances in adsorptive separation of ethane and ethylene by C2H6-selective MOFs and other adsorbents. <i>Chemical Engineering Journal</i> , 2021 , 431, 133208	14.7	11
119	Separation of propylene and propane with pillar-layer metal-organic frameworks by exploiting thermodynamic-kinetic synergetic effect. <i>Chemical Engineering Journal</i> , 2021 , 133284	14.7	0
118	Highly Efficient Capture of Postcombustion Generated CO2 through a Copper-Based Metal Drganic Framework. <i>Energy & Description</i> 2021, 35, 610-617	4.1	7
117	Insights into the Structure-Activity Relationship in Aerobic Alcohol Oxidation over a Metal-Organic-Framework-Supported Molybdenum(VI) Catalyst. <i>Journal of the American Chemical Society</i> , 2021 , 143, 4302-4310	16.4	17
116	Kinome profiling analysis identified Src pathway as a novel therapeutic target in combination with histone deacetylase inhibitors for cutaneous T-cell lymphoma. <i>Journal of Dermatological Science</i> , 2021 , 101, 194-201	4.3	1
115	Tuning the Structural Flexibility for Multi-Responsive Gas Sorption in Isonicotinate-Based Metal-Organic Frameworks. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 16820-16827	9.5	10
114	Metal Drganic Frameworks for Xylene Separation: From Computational Screening to Machine Learning. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 7839-7848	3.8	6
113	Solution-Processable Metal-Organic Framework Nanosheets with Variable Functionalities. <i>Advanced Materials</i> , 2021 , 33, e2101257	24	8
112	Adsorption behavior of metal-organic frameworks: From single simulation, high-throughput computational screening to machine learning. <i>Computational Materials Science</i> , 2021 , 193, 110383	3.2	6
111	Molecular fingerprint and machine learning to accelerate design of high-performance homochiral metal Brganic frameworks. <i>AICHE Journal</i> , 2021 , 67, e17352	3.6	2
110	Chiral metal-organic frameworks with tunable catalytic selectivity in asymmetric transfer hydrogenation reactions. <i>Nano Research</i> , 2021 , 14, 466-472	10	18

(2020-2021)

109	Implanting polyethylene glycol into MIL-101(Cr) as hydrophobic barrier for enhancing toluene adsorption under highly humid environment. <i>Chemical Engineering Journal</i> , 2021 , 404, 126562	14.7	19
108	A Ni-based metal-organic framework with super-high C3H8 uptake for adsorptive separation of light alkanes. <i>Separation and Purification Technology</i> , 2021 , 266, 118198	8.3	3
107	Techno-economic analysis of metal b rganic frameworks for adsorption heat pumps/chillers: from directional computational screening, machine learning to experiment. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 7656-7666	13	7
106	Preferential adsorption of ethane over ethylene on a Zr-based metalorganic framework: impacts of CH?N hydrogen bonding. <i>New Journal of Chemistry</i> , 2021 , 45, 8045-8053	3.6	6
105	Metal-Organic Frameworks: Solution-Processable Metal Drganic Framework Nanosheets with Variable Functionalities (Adv. Mater. 29/2021). <i>Advanced Materials</i> , 2021 , 33, 2170228	24	O
104	Predicting adsorption and separation performance indicators of Xe/Kr in metal-organic frameworks via a precursor-based neural network model. <i>Chemical Engineering Science</i> , 2021 , 243, 116772	4.4	1
103	Structural Diversity of Zirconium Metal-Organic Frameworks and Effect on Adsorption of Toxic Chemicals. <i>Journal of the American Chemical Society</i> , 2020 , 142, 21428-21438	16.4	44
102	Molecular Understanding and Design of Porous Polyurethane Hydrogels with Ultralow-Oil-Adhesion for Oil-Water Separation. <i>ACS Applied Materials & Discours (1988)</i> , 12, 5653	30 ⁹ 5854	10 ¹¹
101	Improving CH4/N2 selectivity within isomeric Al-based MOFs for the highly selective capture of coal-mine methane. <i>AICHE Journal</i> , 2020 , 66, e16287	3.6	16
100	Selective extraction of methane from C1/C2/C3 on moisture-resistant MIL-142A with interpenetrated networks. <i>Chemical Engineering Journal</i> , 2020 , 395, 125057	14.7	9
99	Room-Temperature Synthesis of Pyr1/3@Cu B TC with Enhanced Stability and Its Excellent Performance for Separation of Propylene/Propane. <i>Industrial & Description of Propylene (Propane)</i> , 2020 , 59, 6202-6209	3.9	6
98	Synthesis and Adsorption Performance of Ag/FAl2O3 with High Adsorption Capacities for Dibenzyl Disulfide. <i>Industrial & Disulfide</i> .	3.9	3
97	Machine learning and high-throughput computational screening of hydrophobic metal®rganic frameworks for capture of formaldehyde from air. <i>Green Energy and Environment</i> , 2020 ,	5.7	14
96	Fe-Encapsulated ZSM-5 Zeolite with Nanosheet-Assembled Structure for the Selective Catalytic Reduction of NOx with NH3. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 8592-8600	3.9	5
95	Large-Scale Screening and Machine Learning to Predict the Computation-Ready, Experimental Metal-Organic Frameworks for CO2 Capture from Air. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 569	2.6	23
94	Machine Learning and High-throughput Computational Screening of Metal-organic Framework for Separation of Methane/ethane/propane. <i>Acta Chimica Sinica</i> , 2020 , 78, 427	3.3	9
93	Efficient adsorptive separation of propene over propane through a pillar-layer cobalt-based metalBrganic framework. <i>AICHE Journal</i> , 2020 , 66, e16858	3.6	16
92	Self-Assembly of Highly Stable Zirconium(IV) Coordination Cages with Aggregation Induced Emission Molecular Rotors for Live-Cell Imaging. <i>Angewandte Chemie</i> , 2020 , 132, 10237-10245	3.6	8

91	Adsorption and separation of propane/propylene on various ZIF-8 polymorphs: Insights from GCMC simulations and the ideal adsorbed solution theory (IAST). <i>Chemical Engineering Journal</i> , 2020 , 386, 123	9457	21
90	Self-Assembly of Highly Stable Zirconium(IV) Coordination Cages with Aggregation Induced Emission Molecular Rotors for Live-Cell Imaging. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10151-10159	16.4	55
89	Machine learning and in silico discovery of metal-organic frameworks: Methanol as a working fluid in adsorption-driven heat pumps and chillers. <i>Chemical Engineering Science</i> , 2020 , 214, 115430	4.4	26
88	Highly rapid mechanochemical synthesis of a pillar-layer metal-organic framework for efficient CH4/N2 separation. <i>Chemical Engineering Journal</i> , 2020 , 385, 123836	14.7	26
87	Tuning the Atrazine Binding Sites in an Indium-Based Flexible Metal-Organic Framework. <i>ACS Applied Materials & Applied & Appl</i>	9.5	9
86	Machine-learning-assisted high-throughput computational screening of high performance metal B rganic frameworks. <i>Molecular Systems Design and Engineering</i> , 2020 , 5, 725-742	4.6	37
85	Combining large-scale screening and machine learning to predict the metal-organic frameworks for organosulfurs removal from high-sour natural gas. <i>APL Materials</i> , 2019 , 7, 091101	5.7	11
84	Zirconium-Based Metal D rganic Framework with 9-Connected Nodes for Ammonia Capture. <i>ACS Applied Nano Materials</i> , 2019 , 2, 6098-6102	5.6	37
83	Rapid room temperature conversion of hydroxy double salt to MOF-505 for CO2 capture. <i>CrystEngComm</i> , 2019 , 21, 165-171	3.3	8
82	Encapsulation and Protection of Ultrathin Two-Dimensional Porous Organic Nanosheets within Biocompatible Metal Drganic Frameworks for Live-Cell Imaging. <i>Chemistry of Materials</i> , 2019 , 31, 4897-4	4912	17
81	Ethane-Selective Behavior Achieved on a Nickel-Based Metal Drganic Framework: Impact of Pore Effect and Hydrogen Bonds. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 10516-10523	3.9	9
80	Amino Acid Imprinted UiO-66s for Highly Recognized Adsorption of Small Angiotensin-Converting-Enzyme-Inhibitory Peptides. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2019 , 11, 23039-23049	9.5	22
79	Moisture stability of ethane-selective Ni(II), Fe(III), Zr(IV)-based metal@rganic frameworks. <i>AICHE Journal</i> , 2019 , 65, e16616	3.6	20
78	Identifying the best metalorganic frameworks and unravelling different mechanisms for the separation of pentane isomers. <i>Molecular Systems Design and Engineering</i> , 2019 , 4, 609-615	4.6	7
77	Cerium Doped Pt/TiO2 for Catalytic Oxidation of Low Concentration Formaldehyde at Room Temperature. <i>Catalysis Letters</i> , 2019 , 149, 1319-1325	2.8	7
76	Development of Iron Encapsulated Hollow Beta Zeolites for Ammonia Selective Catalytic Reduction. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 2914-2923	3.9	7
75	Establishment and characterization of a novel dedifferentiated chondrosarcoma cell line, NCC-dCS1-C1. <i>Human Cell</i> , 2019 , 32, 202-213	4.5	5
74	Functional UiO-66 for the removal of sulfur-containing compounds in gas and liquid mixtures: A molecular simulation study. <i>Chemical Engineering Journal</i> , 2019 , 356, 737-745	14.7	10

(2018-2019)

73	Ultrahigh CO2/CH4 and CO2/N2 adsorption selectivities on a cost-effectively L-aspartic acid based metal-organic framework. <i>Chemical Engineering Journal</i> , 2019 , 375, 122074	14.7	26
7²	Novel Hierarchical Fe(III)-Doped Cu-MOFs With Enhanced Adsorption of Benzene Vapor. <i>Frontiers in Chemistry</i> , 2019 , 7, 652	5	12
71	Computational Screening of Metal?Organic Framework Membranes for the Separation of 15 Gas Mixtures. <i>Nanomaterials</i> , 2019 , 9,	5.4	13
70	A new anti-biofilm strategy of enabling arbitrary surfaces of materials and devices with robust bacterial anti-adhesion via a spraying modified microsphere method. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 26039-26052	13	104
69	Superoxide Decay Pathways in Oxygen Reduction Reaction on Carbon-Based Catalysts Evidenced by Theoretical Calculations. <i>ChemSusChem</i> , 2019 , 12, 1133-1138	8.3	12
68	An indium-based ethane-trapping MOF for efficient selective separation of C2H6/C2H4 mixture. <i>Separation and Purification Technology</i> , 2019 , 212, 51-56	8.3	32
67	Mn3O4@C Nanoparticles Supported on Porous Carbon as Bifunctional Oxygen Electrodes and their Electrocatalytic Mechanism. <i>ChemElectroChem</i> , 2019 , 6, 359-368	4.3	17
66	Novel glucosamine-based carbon adsorbents with high capacity and its enhanced mechanism of preferential adsorption of C2H6 over C2H4. <i>Chemical Engineering Journal</i> , 2019 , 358, 1114-1125	14.7	33
65	Hydrophobic Shielding of Outer Surface: Enhancing the Chemical Stability of Metal Drganic Polyhedra. <i>Angewandte Chemie</i> , 2019 , 131, 1053-1057	3.6	7
64	Hydrophobic Shielding of Outer Surface: Enhancing the Chemical Stability of Metal-Organic Polyhedra. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 1041-1045	16.4	31
63	Selective Adsorption of Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. <i>ACS Applied Materials & ACS ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	77
62	Iron-Based Metal-Organic Framework with Hydrophobic Quadrilateral Channels for Highly Selective Separation of Hexane Isomers. <i>ACS Applied Materials & Discrete Separation of Hexane Isomers</i> .	9.5	27
61	Liquid-Assisted Mechanochemical Synthesis of Copper Based MOF-505 for the Separation of CO2 over CH4 or N2. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 703-709	3.9	48
60	High-throughput computational screening of metal-organic framework membranes for upgrading of natural gas. <i>Journal of Membrane Science</i> , 2018 , 551, 47-54	9.6	53
59	Protein Translocation through a MoS2 Nanopore: A Molecular Dynamics Study. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 2070-2080	3.8	32
58	Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. <i>Nature Communications</i> , 2018 , 9, 1745	17.4	166
57	Highly Adsorptive Separation of Ethane/Ethylene by An Ethane-Selective MOF MIL-142A. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 4063-4069	3.9	61
56	An ethane-trapping MOF PCN-250 for highly selective adsorption of ethane over ethylene. Chemical Engineering Science, 2018 , 175, 110-117	4.4	125

55	Highly selective adsorption separation of light hydrocarbons with a porphyrinic zirconium metal-organic framework PCN-224. <i>Separation and Purification Technology</i> , 2018 , 207, 262-268	8.3	33
54	An Ultramicroporous Nickel-Based Metal Organic Framework for Adsorption Separation of CO2 over N2 or CH4. <i>Energy & amp; Fuels</i> , 2018 , 32, 8676-8682	4.1	14
53	A pillar-layer metal-organic framework for efficient adsorption separation of propylene over propane. <i>Separation and Purification Technology</i> , 2018 , 204, 75-80	8.3	19
52	Selective Adsorptive Separation of CO2/CH4 and CO2/N2 by a Water Resistant ZirconiumBorphyrin MetalDrganic Framework. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 12215-12224	3.9	28
51	High-Throughput Screening of Metal-Organic Frameworks for the Separation of Hydrogen Sulfide and Carbon Dioxide from Natural Gas. <i>Acta Chimica Sinica</i> , 2018 , 76, 785	3.3	10
50	Molecular simulation study of wet flue gas adsorption on zeolite 13X. <i>Microporous and Mesoporous Materials</i> , 2018 , 261, 181-197	5.3	29
49	Design and self-assembly of hexahedral coordination cages for cascade reactions. <i>Nature Communications</i> , 2018 , 9, 4423	17.4	49
48	Unusual Moisture-Enhanced CO Capture within Microporous PCN-250 Frameworks. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 38638-38647	9.5	33
47	Pazopanib-induced changes in protein expression signatures of extracellular vesicles in synovial sarcoma. <i>Biochemical and Biophysical Research Communications</i> , 2018 , 506, 723-730	3.4	1
46	A novel fructose-based adsorbent with high capacity and its ethane-selective adsorption property. Journal of Solid State Chemistry, 2018 , 268, 190-197	3.3	9
45	Computational screening of hydrophobic metal®rganic frameworks for the separation of H2S and CO2 from natural gas. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 18898-18905	13	52
44	Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11734-11742	13	61
43	Establishment and characterization of novel patient-derived osteosarcoma xenograft and cell line. <i>In Vitro Cellular and Developmental Biology - Animal</i> , 2018 , 54, 528-536	2.6	11
42	A gemini-type superspreader: Synthesis, spreading behavior and superspreading mechanism. <i>Chemical Engineering Journal</i> , 2017 , 315, 262-273	14.7	14
41	Selective Adsorption of Light Alkanes on a Highly Robust Indium Based Metal@rganic Framework. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 4488-4495	3.9	36
40	Formation of willow leaf-like structures composed of NH2-MIL68(In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr(VI). <i>Nano Research</i> , 2017 , 10, 3543-3556	10	51
39	Efficient Mechanochemical Synthesis of MOF-5 for Linear Alkanes Adsorption. <i>Journal of Chemical & Engineering Data</i> , 2017 , 62, 2030-2036	2.8	64
38	Molecular Design of Zirconium Tetrazolate Metal®rganic Frameworks for CO2 Capture. <i>Crystal Growth and Design</i> , 2017 , 17, 543-549	3.5	25

(2014-2017)

37	High-Throughput Computational Screening of Metal Drganic Frameworks for Thiol Capture. Journal of Physical Chemistry C, 2017 , 121, 22208-22215	3.8	25
36	Efficient adsorptive separation of C3H6 over C3H8 on flexible and thermoresponsive CPL-1. Chemical Engineering Journal, 2017 , 328, 360-367	14.7	45
35	Enhanced Adsorption Performance of Aromatics on a Novel Chromium-Based [email[protected] Oxide Composite. <i>Energy & Documents (March 2017)</i> , 31, 13985-13990	4.1	11
34	Generation of novel patient-derived CIC- DUX4 sarcoma xenografts and cell lines. <i>Scientific Reports</i> , 2017 , 7, 4712	4.9	29
33	Highly efficient mechanochemical synthesis of an indium based metal-organic framework with excellent water stability. <i>Chemical Engineering Science</i> , 2017 , 158, 539-544	4.4	47
32	A new MOF-505@GO composite with high selectivity for CO 2 /CH 4 and CO 2 /N 2 separation. <i>Chemical Engineering Journal</i> , 2017 , 308, 1065-1072	14.7	163
31	Proteomic approach toward determining the molecular background of pazopanib resistance in synovial sarcoma. <i>Oncotarget</i> , 2017 , 8, 109587-109595	3.3	10
30	Ethane selective adsorbent Ni(bdc)(ted)0.5 with high uptake and its significance in adsorption separation of ethane and ethylene. <i>Chemical Engineering Science</i> , 2016 , 148, 275-281	4.4	98
29	In silico screening of 4764 computation-ready, experimental metal®rganic frameworks for CO2 separation. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2105-2114	13	84
28	Design of amine-functionalized metal-organic frameworks for CO2 separation: the more amine, the better?. <i>Chemical Communications</i> , 2016 , 52, 974-7	5.8	62
27	A novel bimetallic MIL-101(Cr, Mg) with high CO2 adsorption capacity and CO2/N2 selectivity. <i>Chemical Engineering Science</i> , 2016 , 147, 109-117	4.4	86
26	Seawater Pervaporation through Zeolitic Imidazolate Framework Membranes: Atomistic Simulation Study. <i>ACS Applied Materials & </i>	9.5	54
25	High-throughput computational screening of 137953 metal of ganic frameworks for membrane separation of a CO2/N2/CH4 mixture. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15904-15912	13	70
24	Highly enhanced and weakened adsorption properties of two MOFs by water vapor for separation of CO2/CH4 and CO2/N2 binary mixtures. <i>Chemical Engineering Journal</i> , 2015 , 270, 385-392	14.7	77
23	Competitive adsorption of water vapor with VOCs dichloroethane, ethyl acetate and benzene on MIL-101(Cr) in humid atmosphere. <i>RSC Advances</i> , 2015 , 5, 1827-1834	3.7	73
22	Polydopamine-based synthesis of a zeolite imidazolate framework ZIF-100 membrane with high H2/CO2 selectivity. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4722-4728	13	82
21	Designing new amine functionalized metal-organic frameworks for carbon dioxide/methane separation. <i>Fluid Phase Equilibria</i> , 2014 , 362, 342-348	2.5	13
20	Adsorption performance of a MIL-101(Cr)/graphite oxide composite for a series of n-alkanes. <i>RSC Advances</i> , 2014 , 4, 56216-56223	3.7	41

19	A novel MOF/graphene oxide composite GrO@MIL-101 with high adsorption capacity for acetone. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 4722-4730	13	165
18	Preparation and Adsorption Performance of [email[protected] for Separation of CO2/CH4. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 11176-11184	3.9	101
17	Molecular dynamics simulations on the melting of gold nanoparticles. <i>Phase Transitions</i> , 2014 , 87, 59-70	1.3	30
16	Advanced Monte Carlo simulations of the adsorption of chiral alcohols in a homochiral metal-organic framework. <i>AICHE Journal</i> , 2014 , 60, 2324-2334	3.6	13
15	Experimental and molecular simulation studies of CO2 adsorption on zeolitic imidazolate frameworks: ZIF-8 and amine-modified ZIF-8. <i>Adsorption</i> , 2013 , 19, 25-37	2.6	85
14	Decomposition of Toluene in a Plasma Catalysis System with NiO, MnO2, CeO2, Fe2O3, and CuO Catalysts. <i>Plasma Chemistry and Plasma Processing</i> , 2013 , 33, 1073-1082	3.6	37
13	Enhancement of CO2 Adsorption and CO2/N2 Selectivity on ZIF-8 via Postsynthetic Modification. <i>AICHE Journal</i> , 2013 , 59, 2195-2206	3.6	137
12	Noble Gas Adsorption in Copper Trimesate, HKUST-1: An Experimental and Computational Study. Journal of Physical Chemistry C, 2013 , 117, 20116-20126	3.8	80
11	Adsorption Isotherms, Kinetics, and Desorption of 1,2-Dichloroethane on Chromium-Based Metal Organic Framework MIL-101. <i>Separation Science and Technology</i> , 2013 , 48, 1479-1489	2.5	41
10	Adsorption and Diffusion of Benzene on Chromium-Based Metal Organic Framework MIL-101 Synthesized by Microwave Irradiation. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 2254-2	2261	109
9	Adsorption and Diffusion of Ethyl Acetate on the Chromium-Based Metal Drganic Framework MIL-101. <i>Journal of Chemical & C</i>	2.8	26
8	Molecular simulation on the separation of water/ethanol azeotropic mixture by poly(vinyl alcohol) membrane. <i>Fluid Phase Equilibria</i> , 2011 , 302, 14-20	2.5	19
87		2.5	19 7
	membrane. Fluid Phase Equilibria, 2011, 302, 14-20 Role of Temperature in the Structure of Zn(II)-1,4,-BDC Metal-Organic Frameworks and their Adsorption and Diffusion Properties for Carbon Dioxide. Separation Science and Technology, 2011,		
7	membrane. Fluid Phase Equilibria, 2011, 302, 14-20 Role of Temperature in the Structure of Zn(II)-1,4,-BDC Metal-Organic Frameworks and their Adsorption and Diffusion Properties for Carbon Dioxide. Separation Science and Technology, 2011, 46, 1337-1345 Adsorption of CO2 on Zeolite 13X and Activated Carbon with Higher Surface Area. Separation	2.5	7
7	membrane. Fluid Phase Equilibria, 2011, 302, 14-20 Role of Temperature in the Structure of Zn(II)-1,4,-BDC Metal-Organic Frameworks and their Adsorption and Diffusion Properties for Carbon Dioxide. Separation Science and Technology, 2011, 46, 1337-1345 Adsorption of CO2 on Zeolite 13X and Activated Carbon with Higher Surface Area. Separation Science and Technology, 2010, 45, 710-719 Effects of loading different metal ions on an activated carbon on the desorption activation energy	2.5	7
7 6 5	Role of Temperature in the Structure of Zn(II)-1,4,-BDC Metal-Organic Frameworks and their Adsorption and Diffusion Properties for Carbon Dioxide. <i>Separation Science and Technology</i> , 2011 , 46, 1337-1345 Adsorption of CO2 on Zeolite 13X and Activated Carbon with Higher Surface Area. <i>Separation Science and Technology</i> , 2010 , 45, 710-719 Effects of loading different metal ions on an activated carbon on the desorption activation energy of dichloromethane/trichloromethane. <i>Journal of Hazardous Materials</i> , 2010 , 179, 790-4 Adsorption of Benzothiophene and Dibenzothiophene on Ion-Impregnated Activated Carbons and	2.5 2.5 12.8	7 91 31

The modulation of ethane-selective adsorption performance in series of bimetal PCN-250 metal Brganic frameworks: Impact of metal composition. *AICHE Journal*,e17385

3.6 3