G H Bernhard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3000407/publications.pdf

Version: 2024-02-01

136950 138484 3,764 72 32 58 h-index citations g-index papers 102 102 102 4613 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2021. Photochemical and Photobiological Sciences, 2022, 21, 275-301.	2.9	40
2	Updated analysis of data from Palmer Station, Antarctica (64° S), and San Diego, California (32° N), confirms large effect of the Antarctic ozone hole on UV radiation. Photochemical and Photobiological Sciences, 2022, 21, 373-384.	2.9	6
3	Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. Photochemical and Photobiological Sciences, 2021, 20, 1-67.	2.9	93
4	GUV long-term measurements of total ozone column and effective cloud transmittance at three Norwegian sites. Atmospheric Chemistry and Physics, 2021, 21, 7881-7899.	4.9	5
5	Floral bullseyes and stratospheric ozone. Current Biology, 2021, 31, R885-R887.	3.9	1
6	The success of the Montreal Protocol in mitigating interactive effects of stratospheric ozone depletion and climate change on the environment. Global Change Biology, 2021, 27, 5681-5683.	9.5	9
7	Antarctica and the Southern Ocean. Bulletin of the American Meteorological Society, 2021, 102, S317-S356.	3.3	12
8	The Arctic. Bulletin of the American Meteorological Society, 2021, 102, S263-S316.	3.3	23
9	Recordâ€Breaking Increases in Arctic Solar Ultraviolet Radiation Caused by Exceptionally Large Ozone Depletion in 2020. Geophysical Research Letters, 2020, 47, e2020GL090844.	4.0	30
10	Trends of UV Radiation in Antarctica. Atmosphere, 2020, 11, 795.	2.3	14
11	Environmental effects of stratospheric ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2019. Photochemical and Photobiological Sciences, 2020, 19, 542-584.	2.9	59
12	Accurate 3-D radiative transfer simulation of spectral solar irradiance during the total solar eclipse of 21ÂAugustÂ2017. Atmospheric Chemistry and Physics, 2020, 20, 1961-1976.	4.9	5
13	The Arctic. Bulletin of the American Meteorological Society, 2020, 101, S239-S286.	3.3	29
14	Validation of the TROPOspheric Monitoring Instrument (TROPOMI) surface UV radiation product. Atmospheric Measurement Techniques, 2020, 13, 6999-7024.	3.1	17
15	New continuous total ozone, UV, VIS and PAR measurements at Marambio, 64° S, Antarctica. Earth System Science Data, 2020, 12, 947-960.	9.9	9
16	Success of Montreal Protocol Demonstrated by Comparing High-Quality UV Measurements with "World Avoided―Calculations from Two Chemistry-Climate Models. Scientific Reports, 2019, 9, 12332.	3.3	44
17	Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future. Nature Sustainability, 2019, 2, 569-579.	23.7	156
18	Measurements of spectral irradiance during the solar eclipse of 21ÂAugustÂ2017: reassessment of the effect of solar limb darkening and of changes in total ozone. Atmospheric Chemistry and Physics, 2019, 19, 4703-4719.	4.9	10

#	Article	IF	CITATIONS
19	Ozone—climate interactions and effects on solar ultraviolet radiation. Photochemical and Photobiological Sciences, 2019, 18, 602-640.	2.9	126
20	Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017. Photochemical and Photobiological Sciences, 2018, 17, 127-179.	2.9	177
21	The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives. Atmospheric Chemistry and Physics, 2018, 18, 4935-4964.	4.9	162
22	UV measurements at Marambio and Ushuaia during 2000–2010. Atmospheric Chemistry and Physics, 2018, 18, 16019-16031.	4.9	8
23	State of the Climate in 2017. Bulletin of the American Meteorological Society, 2018, 99, Si-S310.	3.3	160
24	Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2016. Photochemical and Photobiological Sciences, 2017, 16, 107-145.	2.9	62
25	Algorithms and uncertainties for the determination of multispectral irradiance components and aerosol optical depth from a shipborne rotating shadowband radiometer. Atmospheric Measurement Techniques, 2017, 10, 709-730.	3.1	4
26	Retrieving vertical ozone profiles from measurements of global spectral irradiance. Atmospheric Measurement Techniques, 2017, 10, 4979-4994.	3.1	1
27	A new method for estimating UV fluxes at ground level in cloud-free conditions. Atmospheric Measurement Techniques, 2017, 10, 4965-4978.	3.1	10
28	State of the Climate in 2016. Bulletin of the American Meteorological Society, 2017, 98, Si-S280.	3.3	132
29	State of the Climate in 2015. Bulletin of the American Meteorological Society, 2016, 97, Si-S275.	3.3	142
30	Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015. Photochemical and Photobiological Sciences, 2016, 15, 141-174.	2.9	48
31	Comparison of OMI UV observations with ground-based measurements at high northern latitudes. Atmospheric Chemistry and Physics, 2015, 15, 7391-7412.	4.9	40
32	Comment on $\hat{a}\in \infty$ Record solar UV irradiance in the tropical Andes, by Cabrol et al. $\hat{a}\in \mathbb{R}$ Frontiers in Environmental Science, 2015, 3, .	3.3	11
33	Environmental effects of ozone depletion and its interactions with climate change: 2014 assessment: Executive summary. Photochemical and Photobiological Sciences, 2015, 14, 14-18.	2.9	11
34	State of the Climate in 2014. Bulletin of the American Meteorological Society, 2015, 96, ES1-ES32.	3.3	78
35	State of the Climate in 2013. Bulletin of the American Meteorological Society, 2014, 95, S1-S279.	3.3	138
36	Ozone depletion and climate change: impacts on UV radiation. Photochemical and Photobiological Sciences, 2014, 14, 19-52.	2.9	227

#	Article	IF	CITATIONS
37	High levels of ultraviolet radiation observed by ground-based instruments below the 2011 Arctic ozone hole. Atmospheric Chemistry and Physics, 2013, 13, 10573-10590.	4.9	39
38	State of the Climate in 2012. Bulletin of the American Meteorological Society, 2013, 94, S1-S258.	3.3	129
39	State of the Climate in 2011. Bulletin of the American Meteorological Society, 2012, 93, S1-S282.	3.3	121
40	Trends of solar ultraviolet irradiance at Barrow, Alaska, and the effect of measurement uncertainties on trend detection. Atmospheric Chemistry and Physics, 2011, 11, 13029-13045.	4.9	27
41	Climatology of Ultraviolet Radiation at High Latitudes Derived from Measurements of the National Science Foundation's Ultraviolet Spectral Irradiance Monitoring Network. , 2010, , 48-72.		17
42	Dissemination of data from the National Science Foundation's UV monitoring network., 2009,,.		1
43	Comparison of ultraviolet spectroradiometers in Antarctica. Journal of Geophysical Research, 2008, 113, .	3.3	8
44	Intercomparison and harmonization of UV Index measurements from multiband filter radiometers. Journal of Geophysical Research, 2008, 113 , .	3.3	21
45	2003 North American interagency intercomparison of ultraviolet spectroradiometers: scanning and spectrograph instruments Journal of Applied Remote Sensing, 2008, 2, 023547.	1.3	8
46	Comparison of UV irradiance measurements at Summit, Greenland; Barrow, Alaska; and South Pole, Antarctica. Atmospheric Chemistry and Physics, 2008, 8, 4799-4810.	4.9	25
47	Ultraviolet and visible radiation at Barrow, Alaska: Climatology and influencing factors on the basis of version 2 National Science Foundation network data. Journal of Geophysical Research, 2007, 112, .	3.3	49
48	Validation of daily erythemal doses from Ozone Monitoring Instrument with groundâ€based UV measurement data. Journal of Geophysical Research, 2007, 112, .	3.3	129
49	UV climatology at McMurdo Station, Antarctica, based on version 2 data of the National Science Foundation's Ultraviolet Radiation Monitoring Network. Journal of Geophysical Research, 2006, 111, .	3.3	26
50	New Spectroradiometers Complying with the NDSC Standards. Journal of Atmospheric and Oceanic Technology, 2006, 23, 241-251.	1.3	54
51	International intercomparison of multiband filter radiometers in Oslo 2005., 2006,,.		1
52	UV climatology at Palmer Station, Antarctica, based on Version 2 NSF network data., 2005,,.		12
53	Real-time ultraviolet and column ozone from multichannel ultraviolet radiometers deployed in the National Science Foundation's ultraviolet monitoring network. Optical Engineering, 2005, 44, 041011.	1.0	32
54	Bias in Dobson total ozone measurements at high latitudes due to approximations in calculations of ozone absorption coefficients and air mass. Journal of Geophysical Research, 2005, 110 , .	3.3	64

#	Article	IF	Citations
55	Version 2 data of the National Science Foundation's Ultraviolet Radiation Monitoring Network: South Pole. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	88
56	UV and total ozone climatology at the South Pole based on Version 2 NSF network data., 2004, 5545, 1.		0
57	Calculation of total column ozone from global UV spectra at high latitudes. Journal of Geophysical Research, 2003, 108, .	3.3	33
58	The quality of data from the National Science Foundation's UV monitoring network for polar regions. , 2003, , .		6
59	Moderation of Cloud Reduction of UV in the Antarctic Due to High Surface Albedo. Journal of Applied Meteorology and Climatology, 2003, 42, 1174-1183.	1.7	39
60	<title>Comparison of measured and modeled spectral ultraviolet irradiance at Antarctic stations used to determine biases in total ozone data from various sources</title> ., 2002, 4482, 115.		9
61	The 1997 North American Interagency Intercomparison of Ultraviolet Spectroradiometers Including Narrowband Filter Radiometers. Journal of Research of the National Institute of Standards and Technology, 2002, 107, 19-62.	1.2	24
62	SUSPEN intercomparison of ultraviolet spectroradiometers. Journal of Geophysical Research, 2001, 106, 12509-12525.	3.3	99
63	A note on the interannual variations of UV-B erythemal doses and solar irradiance from ground-based and satellite observations. Annales Geophysicae, 2001, 19, 115-120.	1.6	21
64	Uncertainty of measurements of spectral solar UV irradiance. Journal of Geophysical Research, 1999, 104, 14321-14345.	3.3	143
65	Ratio spectra as a quality control tool for solar spectral UV measurements. Journal of Geophysical Research, 1998, 103, 28855-28861.	3.3	11
66	Measurements of spectral solar UV irradiance in tropical-Australia. Journal of Geophysical Research, 1997, 102, 8719-8730.	3.3	79
67	New Entrance Optics for Solar Spectral UV Measurements. Photochemistry and Photobiology, 1997, 65, 923-930.	2.5	38
68	New maximum UV irradiance levels observed in Central Europe. Atmospheric Environment, 1997, 31, 2971-2976.	4.1	53
69	High-accuracy spectroradiometry of solar ultraviolet radiation. Metrologia, 1995, 32, 697-700.	1.2	24
70	Geographical differences in the UV Measured by intercompared spectroradiometers. Geophysical Research Letters, 1995, 22, 1889-1892.	4.0	85
71	UV-B in Germany higher in 1993 than in 1992. Geophysical Research Letters, 1994, 21, 577-580.	4.0	77
72	<title>Cosine error correction of spectral UV-irradiances</title> ., 1993, , .		60