Sara Mantero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3000395/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards an In Vitro Retinal Model to Study and Develop New Therapies for Age-Related Macular Degeneration. Bioengineering, 2021, 8, 18.	1.6	6
2	A Perfusion Bioreactor for Longitudinal Monitoring of Bioengineered Liver Constructs. Nanomaterials, 2021, 11, 275.	1.9	12
3	The Evolution of Fabrication Methods in Human Retina Regeneration. Applied Sciences (Switzerland), 2021, 11, 4102.	1.3	3
4	Bioreactors as physiologicallike in vitro models. Biomedical Science and Engineering, 2020, 3, .	0.0	0
5	Insight on the endothelialization of small silk-based tissue-engineered vascular grafts. International Journal of Artificial Organs, 2020, 43, 631-644.	0.7	16
6	Shear-resistant hydrogels to control permeability of porous tubular scaffolds in vascular tissue engineering. Materials Science and Engineering C, 2019, 105, 110035.	3.8	8
7	Multi-stage bioengineering of a layered oesophagus with in vitro expanded muscle and epithelial adult progenitors. Nature Communications, 2018, 9, 4286.	5.8	74
8	Estimation of the physiological mechanical conditioning in vascular tissue engineering by a predictive fluid-structure interaction approach. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 1077-1088.	0.9	9
9	Alternating Air-Medium Exposure in Rotating Bioreactors Optimizes Cell Metabolism in 3D Novel Tubular Scaffold Polyurethane Foams. Journal of Applied Biomaterials and Functional Materials, 2017, 15, 122-132.	0.7	4
10	Cells and stimuli in small-caliber blood vessel tissue engineering. Regenerative Medicine, 2015, 10, 505-527.	0.8	29
11	Erratum to "Detergent-Enzymatic Decellularization of Swine Blood Vessels: Insight on Mechanical Properties for Vascular Tissue Engineering― BioMed Research International, 2014, 2014, 1-2.	0.9	1
12	Skeletal muscle tissue engineering: strategies for volumetric constructs. Frontiers in Physiology, 2014, 5, 362.	1.3	88
13	Arterial Decellularized Scaffolds Produced Using an Innovative Automatic System. Cells Tissues Organs, 2014, 200, 363-373.	1.3	26
14	Detergent-Enzymatic Decellularization of Swine Blood Vessels: Insight on Mechanical Properties for Vascular Tissue Engineering. BioMed Research International, 2013, 2013, 1-8.	0.9	59
15	Correction: Corrigendum: Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature, 2013, 494, 506-506.	13.7	6
16	A Novel Device for the Automatic Decellularization of Biological Tissues. International Journal of Artificial Organs, 2012, 35, 191-198.	0.7	23
17	Enhancing the biological performance of synthetic polymeric materials byÂdecoration with engineered, decellularized extracellular matrix. Biomaterials, 2012, 33, 5085-5093.	5.7	112
18	Trends in biomedical engineering: focus on Regenerative Medicine. Journal of Applied Biomaterials and Biomechanics, 2011, 9, 73-86	0.4	11

SARA MANTERO

#	Article	IF	CITATIONS
19	Both epithelial cells and mesenchymal stem cell–derived chondrocytes contribute to the survival of tissue-engineered airway transplants in pigs. Journal of Thoracic and Cardiovascular Surgery, 2010, 139, 437-443.	0.4	139
20	Tissue Engineering toward Organ Replacement: A Promising Approach in Airway Transplant. International Journal of Artificial Organs, 2009, 32, 763-768.	0.7	11
21	Structural and morphologic evaluation of a novel detergent–enzymatic tissue-engineered tracheal tubular matrix. Journal of Thoracic and Cardiovascular Surgery, 2009, 138, 586-593.	0.4	114
22	A double-chamber rotating bioreactor for the development of tissue-engineered hollow organs: From concept to clinical trial. Biomaterials, 2009, 30, 5260-5269.	5.7	100
23	Rotating versus perfusion bioreactor for the culture of engineered vascular constructs based on hyaluronic acid. Biotechnology and Bioengineering, 2008, 100, 988-997.	1.7	26
24	Prefabricated tracheal prosthesis with partial biodegradable materials: a surgical and tissue engineering evaluation in vivo. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 579-594.	1.9	6
25	PhotoMEA: An opto-electronic biosensor for monitoring in vitro neuronal network activity. BioSystems, 2007, 87, 150-155.	0.9	15
26	Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature, 2006, 444, 574-579.	13.7	692
27	The effect of sodium ascorbate on the mechanical properties of hyaluronan-based vascular constructs. Biomaterials, 2006, 27, 623-630.	5.7	28
28	Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering. Biomaterials, 2005, 26, 4606-4615.	5.7	384
29	Vascular Smooth Muscle Cells on Hyaluronic Acid: Culture and Mechanical Characterization of an Engineered Vascular Construct. Tissue Engineering, 2004, 10, 699-710.	4.9	59
30	Hyperthermia in the Treatment of Cholangiocarcinoma: Development and Testing of an Endobiliary Microwave Device. CardioVascular and Interventional Radiology, 2003, 26, 379-385.	0.9	7
31	Albumin adsorption onto pyrolytic carbon: A molecular mechanics approach. Journal of Biomedical Materials Research Part B, 2002, 59, 329-339.	3.0	16
32	In vivo study of polyurethane-coated gianturco-rosch biliary Z-stents. CardioVascular and Interventional Radiology, 1999, 22, 510-514.	0.9	9
33	Lumbar Dura Mater Biomechanics. Anesthesia and Analgesia, 1999, 88, 1317-1321.	1.1	46
34	A lumped parameter model to evaluate the fluid dynamics of different coronary bypasses. Medical Engineering and Physics, 1996, 18, 477-484.	0.8	63
35	Polyurethane-coated, self-expandable biliary stent: An experimental study. Academic Radiology, 1995, 2, 1078-1081.	1.3	10