Paolo Garza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3000254/publications.pdf

Version: 2024-02-01

73
papers

880 citations

15 h-index 25 g-index

76 all docs

76
docs citations

times ranked

76

816 citing authors

#	Article	IF	CITATIONS
1	Retina: An open-source tool for flexible analysis of RTC traffic. Computer Networks, 2022, 202, 108637.	5.1	2
2	Complementing Location-Based Social Network Data With Mobility Data: A Pattern-Based Approach. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 21216-21227.	8.0	3
3	Real-Time Classification of Real-Time Communications. IEEE Transactions on Network and Service Management, 2022, 19, 4676-4690.	4.9	3
4	Additional Reviewer Assignment by Means of Weighted Association Rules. IEEE Transactions on Emerging Topics in Computing, 2021, 9, 329-341.	4.6	7
5	What's my App?. Performance Evaluation Review, 2021, 48, 41-44.	0.6	3
6	A Data-Driven Based Dynamic Rebalancing Methodology for Bike Sharing Systems. Applied Sciences (Switzerland), 2021, 11, 6967.	2.5	9
7	Attention to Fires: Multi-Channel Deep Learning Models for Wildfire Severity Prediction. Applied Sciences (Switzerland), 2021, 11, 11060.	2.5	11
8	Effective video hyperlinking by means of enriched feature sets and monomodal query combinations. International Journal of Multimedia Information Retrieval, 2020, 9, 215-227.	5.2	2
9	An explainable data-driven approach to web directory taxonomy mapping. Procedia Computer Science, 2020, 176, 1101-1110.	2.0	2
10	Double-Step U-Net: A Deep Learning-Based Approach for the Estimation of Wildfire Damage Severity through Sentinel-2 Satellite Data. Applied Sciences (Switzerland), 2020, 10, 4332.	2.5	28
11	Predicting Car Availability in Free Floating Car Sharing Systems: Leveraging Machine Learning in Challenging Contexts. Electronics (Switzerland), 2020, 9, 1322.	3.1	9
12	Deep Learning Models for Road Passability Detection during Flood Events Using Social Media Data. Applied Sciences (Switzerland), 2020, 10, 8783.	2.5	8
13	Training ensembles of faceted classification models for quantitative stock trading. Computing (Vienna/New York), 2020, 102, 1213-1225.	4.8	9
14	Real-time Object Detection and Tracking in Mixed Reality using Microsoft HoloLens. , 2020, , .		14
15	Price series cross-correlation analysis to enhance the diversification of itemset-based stock portfolios. , 2020, , .		2
16	Combining Machine Learning and Natural Language Processing for Language-Specific, Multi-Lingual, and Cross-Lingual Text Summarization. Advances in Data Mining and Database Management Book Series, 2020, , 1-31.	0.5	0
17	CarPredictor: Forecasting the Number of Free Floating Car Sharing Vehicles within Restricted Urban Areas. , 2019, , .		3
18	ELSA. ACM Transactions on Information Systems, 2019, 37, 1-33.	4.9	23

#	Article	lF	CITATIONS
19	Discovering cross-topic collaborations among researchers by exploiting weighted association rules. Scientometrics, 2018, 116, 1273-1301.	3.0	6
20	Characterizing Situations of Dock Overload in Bicycle Sharing Stations. Applied Sciences (Switzerland), 2018, 8, 2521.	2.5	4
21	Characterizing unpredictable patterns in Wireless Sensor Network data. Information Sciences, 2018, 467, 149-162.	6.9	7
22	Predicting critical conditions in bicycle sharing systems. Computing (Vienna/New York), 2017, 99, 39-57.	4.8	19
23	Discovering profitable stocks for intraday trading. Information Sciences, 2017, 405, 91-106.	6.9	12
24	Planning stock portfolios by means of weighted frequent itemsets. Expert Systems With Applications, 2017, 86, 1-17.	7.6	12
25	A Parallel MapReduce Algorithm to Efficiently Support Itemset Mining on High Dimensional Data. Big Data Research, 2017, 10, 53-69.	4.2	15
26	Frequent Itemsets Mining for Big Data: A Comparative Analysis. Big Data Research, 2017, 9, 67-83.	4.2	37
27	Scaling associative classification for very large datasets. Journal of Big Data, 2017, 4, .	11.0	9
28	Discovering High-Utility Itemsets at Multiple Abstraction Levels. Communications in Computer and Information Science, 2017, , 224-234.	0.5	9
29	SaFe-NeC: A scalable and flexible system for network data characterization. , 2016, , .		3
30	Discovering air quality patterns in urban environments. , 2016, , .		1
31	Modeling Correlations among Air Pollution-Related Data through Generalized Association Rules. , 2016, , .		13
32	SeLINA: A Self-Learning Insightful Network Analyzer. IEEE Transactions on Network and Service Management, 2016, 13, 696-710.	4.9	21
33	Characterization and search of web services through intensional knowledge. Journal of Intelligent Information Systems, 2016, 47, 375-401.	3.9	2
34	PaMPa-HD: A Parallel MapReduce-Based Frequent Pattern Miner for High-Dimensional Data., 2015,,.		6
35	MWI-Sum. ACM Transactions on Information Systems, 2015, 34, 1-35.	4.9	39
36	Digging deep into weighted patient data through multiple-level patterns. Information Sciences, 2015, 322, 51-71.	6.9	4

#	Article	IF	Citations
37	Pattern set mining with schema-based constraint. Knowledge-Based Systems, 2015, 84, 224-238.	7.1	4
38	An Expert CAD Flow for Incremental Functional Diagnosis of Complex Electronic Boards. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34, 835-848.	2.7	6
39	A Review of Scalable Approaches for Frequent Itemset Mining. Communications in Computer and Information Science, 2015, , 243-247.	0.5	2
40	PaWI: Parallel Weighted Itemset Mining by Means of MapReduce. , 2015, , .		4
41	MeTA. ACM Transactions on Intelligent Systems and Technology, 2015, 6, 1-25.	4.5	10
42	NEMICO: Mining Network Data through Cloud-Based Data Mining Techniques. , 2014, , .		3
43	Misleading Generalized Itemset Mining in the Cloud. , 2014, , .		4
44	Infrequent Weighted Itemset Mining Using Frequent Pattern Growth. IEEE Transactions on Knowledge and Data Engineering, 2014, 26, 903-915.	5.7	60
45	Misleading Generalized Itemset discovery. Expert Systems With Applications, 2014, 41, 1400-1410.	7.6	15
46	Twitter data analysis by means of Strong Flipping Generalized Itemsets. Journal of Systems and Software, 2014, 94, 16-29.	4.5	9
47	Expressive generalized itemsets. Information Sciences, 2014, 278, 327-343.	6.9	13
48	Hadoop on a Low-Budget General Purpose HPC Cluster in Academia. Advances in Intelligent Systems and Computing, 2014, , 187-192.	0.6	0
49	Improving classification models with taxonomy information. Data and Knowledge Engineering, 2013, 86, 85-101.	3.4	23
50	A data mining approach to incremental adaptive functional diagnosis. , 2013, , .		15
51	Itemset generalization with cardinality-based constraints. Information Sciences, 2013, 244, 161-174.	6.9	16
52	Frequent weighted itemset mining from gene expression data., 2013,,.		2
53	EnBay: A Novel Pattern-Based Bayesian Classifier. IEEE Transactions on Knowledge and Data Engineering, 2013, 25, 2780-2795.	5.7	22
54	Semi-Automatic Ontology Construction by Exploiting Functional Dependencies and Association Rules. , 2013, , 76-96.		1

#	Article	IF	CITATIONS
55	Generalized association rule mining with constraints. Information Sciences, 2012, 194, 68-84.	6.9	60
56	I-prune: Item selection for associative classification. International Journal of Intelligent Systems, 2012, 27, 279-299.	5 . 7	16
57	Temporal Pattern Mining for Medical Applications. Intelligent Systems Reference Library, 2012, , 9-18.	1.2	6
58	Semi-Automatic Ontology Construction by Exploiting Functional Dependencies and Association Rules. International Journal on Semantic Web and Information Systems, 2011, 7, 1-22.	5.1	2
59	CAS-Mine: providing personalized services in context-aware applications by means of generalized rules. Knowledge and Information Systems, 2011, 28, 283-310.	3.2	25
60	Structured data classification by means of matrix factorization. , 2011, , .		0
61	TOD: Temporal outlier detection by using quasi-functional temporal dependencies. Data and Knowledge Engineering, 2010, 69, 619-639.	3.4	11
62	Support driven opportunistic aggregation for generalized itemset extraction. , 2010, , .		25
63	Mining Rare Association Rules by Discovering Quasi-Functional Dependencies. , 2010, , 131-149.		1
64	Context-Aware User and Service Profiling by Means of Generalized Association Rules. Lecture Notes in Computer Science, 2009, , 50-57.	1.3	11
65	Selection of High Quality Rules in Associative Classification. , 2009, , 173-198.		0
66	A Lazy Approach to Associative Classification. IEEE Transactions on Knowledge and Data Engineering, 2008, 20, 156-171.	5.7	85
67	Soft real-time view management. , 2008, , .		0
68	Using Mined Patterns for XML Query Answering. , 2008, , 39-66.		0
69	Answering XML queries by means of data summaries. ACM Transactions on Information Systems, 2007, 25, 10.	4.9	23
70	Anomaly Detection in XML databases by means of Association Rules., 2007,,.		4
71	On support thresholds in associative classification. , 2004, , .		32
72	Majority Classification by Means of Association Rules. Lecture Notes in Computer Science, 2003, , 35-46.	1.3	7

#	Article	IF	CITATIONS
73	Discovering Higher Level Correlations from XML Data. Advances in Data Mining and Database Management Book Series, 0, , 288-315.	0.5	O