Anastasiia Sholokh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2999997/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Local cyclic adenosine monophosphate signalling cascades—Roles and targets in chronic kidney disease. Acta Physiologica, 2021, 232, e13641.	1.8	10
2	Reconstitution of Î ² -adrenergic regulation of Ca _V 1.2: Rad-dependent and Rad-independent protein kinase A mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
3	The role of AKAP12 in coordination of VEGFâ€induced endothelial cell motility. Acta Physiologica, 2020, 228, e13359.	1.8	3
4	Phosphodiesterase 3A and Arterial Hypertension. Circulation, 2020, 142, 133-149.	1.6	35
5	Cyclin-Dependent Kinase 18 Controls Trafficking of Aquaporin-2 and Its Abundance through Ubiquitin Ligase STUB1, Which Functions as an AKAP. Cells, 2020, 9, 673.	1.8	19
6	New aspects in cardiac L-type Ca2+ channel regulation. Biochemical Society Transactions, 2020, 48, 39-49.	1.6	13
7	Small molecules for modulating the localisation of the water channel aquaporin-2—disease relevance and perspectives for targeting local cAMP signalling. Naunyn-Schmiedeberg's Archives of Pharmacology, 2019, 392, 1049-1064.	1.4	7
8	Small-molecule allosteric activators of PDE4 long form cyclic AMP phosphodiesterases. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13320-13329.	3.3	54
9	Roles of A-Kinase Anchoring Proteins and Phosphodiesterases in the Cardiovascular System. Journal of Cardiovascular Development and Disease, 2018, 5, 14.	0.8	44
10	An AKAP-Lbc-RhoA interaction inhibitor promotes the translocation of aquaporin-2 to the plasma membrane of renal collecting duct principal cells. PLoS ONE, 2018, 13, e0191423.	1.1	28
11	The Trafficking of the Water Channel Aquaporin-2 in Renal Principal Cells—a Potential Target for Pharmacological Intervention in Cardiovascular Diseases. Frontiers in Pharmacology, 2016, 7, 23.	1.6	49
12	Protein–protein interactions of PDE4 family members — Functions, interactions and therapeutic value. Cellular Signalling, 2016, 28, 713-718.	1.7	29
13	Pharmacological Interference With Protein-protein Interactions of Akinase Anchoring Proteins as a Strategy for the Treatment of Disease. Current Drug Targets, 2016, 17, 1147-1171.	1.0	13
14	PDE3A mutations cause autosomal dominant hypertension with brachydactyly. Nature Genetics, 2015, 47, 647-653.	9.4	146
15	Regulation of Sarcoplasmic Reticulum Ca2+ ATPase 2 (SERCA2) Activity by Phosphodiesterase 3A (PDE3A) in Human Myocardium. Journal of Biological Chemistry, 2015, 290, 6763-6776.	1.6	73
16	Pharmacological targeting of AKAP-directed compartmentalized cAMP signalling. Cellular Signalling, 2015, 27, 2474-2487.	1.7	64
17	Clinical Effects of Phosphodiesterase 3A Mutations in Inherited Hypertension With Brachydactyly. Hypertension, 2015, 66, 800-808.	1.3	39
18	Small Molecule AKAP-Protein Kinase A (PKA) Interaction Disruptors That Activate PKA Interfere with Compartmentalized cAMP Signaling in Cardiac Myocytes. Journal of Biological Chemistry, 2011, 286, 9079-9096.	1.6	92

ANASTASIIA SHOLOKH

#	Article	IF	CITATIONS
19	Reciprocal Regulation of Aquaporin-2 Abundance and Degradation by Protein Kinase A and p38-MAP Kinase. Journal of the American Society of Nephrology: JASN, 2010, 21, 1645-1656.	3.0	101
20	Mechanisms of Protein Kinase A Anchoring. International Review of Cell and Molecular Biology, 2010, 283, 235-330.	1.6	145
21	Compartmentalized cAMP signalling in regulated exocytic processes in non-neuronal cells. Cellular Signalling, 2008, 20, 590-601.	1.7	58
22	Compartmentalization of cAMP-Dependent Signaling by Phosphodiesterase-4D Is Involved in the Regulation of Vasopressin-Mediated Water Reabsorption in Renal Principal Cells. Journal of the American Society of Nephrology: JASN, 2007, 18, 199-212.	3.0	134
23	Spatial organisation of AKAP18 and PDE4 isoforms in renal collecting duct principal cells. European Journal of Cell Biology, 2006, 85, 673-678.	1.6	52
24	Actin remodeling requires ERM function to facilitate AQP2 apical targeting. Journal of Cell Science, 2005, 118, 3623-3630.	1.2	67
25	Identification of a Novel A-kinase Anchoring Protein 18 Isoform and Evidence for Its Role in the Vasopressin-induced Aquaporin-2 Shuttle in Renal Principal Cells. Journal of Biological Chemistry, 2004, 279, 26654-26665.	1.6	125
26	Ht31: the first protein kinase A anchoring protein to integrate protein kinase A and Rho signaling1. FEBS Letters, 2001, 507, 264-268.	1.3	58
27	Rho inhibits cAMP-induced translocation of aquaporin-2 into the apical membrane of renal cells. American Journal of Physiology - Renal Physiology, 2001, 281, F1092-F1101.	1.3	109
28	Role and identification of protein kinase A anchoring proteins in vasopressin-mediated aquaporin-2 translocation. Kidney International, 2001, 60, 446-449.	2.6	44
29	An Inhibitory Role of Rho in the Vasopressin-mediated Translocation of Aquaporin-2 into Cell Membranes of Renal Principal Cells. Journal of Biological Chemistry, 2001, 276, 20451-20457.	1.6	147
30	Protein Kinase A Anchoring Proteins Are Required for Vasopressin-mediated Translocation of Aquaporin-2 into Cell Membranes of Renal Principal Cells. Journal of Biological Chemistry, 1999, 274, 4934-4938.	1.6	153