Eilon Sharon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2999573/publications.pdf

Version: 2024-02-01

20 papers 4,498 citations

471509 17 h-index 19 g-index

24 all docs

24 docs citations

times ranked

24

6654 citing authors

#	Article	IF	CITATIONS
1	Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics, 2005, 37, 766-770.	21.4	1,720
2	MicroRNA expression detected by oligonucleotide microarrays: System establishment and expression profiling in human tissues. Genome Research, 2004, 14, 2486-2494.	5 . 5	495
3	Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nature Biotechnology, 2012, 30, 521-530.	17.5	439
4	Distinct Modes of Regulation by Chromatin Encoded through Nucleosome Positioning Signals. PLoS Computational Biology, 2008, 4, e1000216.	3.2	393
5	Deciphering the rules by which $5\hat{a} \in \mathbb{R}^2$ -UTR sequences affect protein expression in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2792-801.	7.1	231
6	Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast. Nature Genetics, 2012, 44, 743-750.	21.4	185
7	Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing. Cell, 2018, 175, 544-557.e16.	28.9	166
8	Genetic variation in MHC proteins is associated with T cell receptor expression biases. Nature Genetics, 2016, 48, 995-1002.	21.4	151
9	Unraveling determinants of transcription factor binding outside the core binding site. Genome Research, 2015, 25, 1018-1029.	5 . 5	146
10	Probing the effect of promoters on noise in gene expression using thousands of designed sequences. Genome Research, 2014, 24, 1698-1706.	5 . 5	118
11	Systematic interrogation of human promoters. Genome Research, 2019, 29, 171-183.	5.5	92
12	A Feature-Based Approach to Modeling Protein–DNA Interactions. PLoS Computational Biology, 2008, 4, e1000154.	3.2	89
13	Systematic Dissection of the Sequence Determinants of Gene 3' End Mediated Expression Control. PLoS Genetics, 2015, 11, e1005147.	3. 5	70
14	Quantification of transplant-derived circulating cell-free DNA in absence of a donor genotype. PLoS Computational Biology, 2017, 13, e1005629.	3.2	60
15	Compensation for differences in gene copy number among yeast ribosomal proteins is encoded within their promoters. Genome Research, 2011, 21, 2114-2128.	5 . 5	51
16	Measurements of the Impact of 3′ End Sequences on Gene Expression Reveal Wide Range and Sequence Dependent Effects. PLoS Computational Biology, 2013, 9, e1002934.	3.2	31
17	Large-scale mapping of gene regulatory logic reveals context-dependent repression by transcriptional activators. Genome Research, 2017, 27, 87-94.	5 . 5	28
18	Inferring gene expression from ribosomal promoter sequences, a crowdsourcing approach. Genome Research, 2013, 23, 1928-1937.	5.5	12

#	Article	IF	CITATIONS
19	A Feature-Based Approach to Modeling Protein-DNA Interactions. , 2007, , 77-91.		4
20	How Transcription Factors Identify Regulatory Sites in Genomic Sequence. Sub-Cellular Biochemistry, 2011, 52, 193-204.	2.4	2