
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2999444/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The genetic history of Ice Age Europe. Nature, 2016, 534, 200-205.	13.7	729
2	An early modern human from Romania with a recent Neanderthal ancestor. Nature, 2015, 524, 216-219.	13.7	633
3	An early modern human from the Pestera cu Oase, Romania. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11231-11236.	3.3	272
4	Scientists' Warning on the Conservation of Subterranean Ecosystems. BioScience, 2019, 69, 641-650.	2.2	170
5	Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry. Nature, 2021, 592, 253-257.	13.7	119
6	Pestera cu Oase 2 and the cranial morphology of early modern Europeans. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1165-1170.	3.3	105
7	Early modern human cranial remains from the PeÅŸtera cu Oase, Romania. Journal of Human Evolution, 2003, 45, 245-253.	1.3	83
8	The Ecological Classification of Cave Animals and Their Adaptations. Ecological Studies, 2018, , 41-67.	0.4	51
9	Towards evidenceâ€based conservation of subterranean ecosystems. Biological Reviews, 2022, 97, 1476-1510.	4.7	39
10	Can Environment Predict Cryptic Diversity? The Case of Niphargus Inhabiting Western Carpathian Groundwater. PLoS ONE, 2013, 8, e76760.	1.1	37
11	Brazilian cave heritage under siege. Science, 2022, 375, 1238-1239.	6.0	32
12	A conservation roadmap for the subterranean biome. Conservation Letters, 2021, 14, e12834.	2.8	31
13	Habitat fragmentation and its effects on groundwater populations. Ecohydrology, 2012, 5, 445-452.	1.1	30
14	Quality and Health Risk Assessment Associated with Water Consumption—A Case Study on Karstic Springs. Water (Switzerland), 2020, 12, 3510.	1.2	30
15	Cave bears (UrsusÂspelaeus) from theÂPeÅŸtera cu Oase (Banat, Romania): Paleobiology andÂtaphonomy. Comptes Rendus - Palevol, 2006, 5, 927-934.	0.1	28
16	A simple method for assessing biotic indicators and predicting biodiversity in the hyporheic zone of a river polluted with metals. Ecological Indicators, 2013, 24, 412-420.	2.6	28
17	Diversity patterns of fauna in dripping water of caves from Transylvania. Annales De Limnologie, 2011, 47, 185-197.	0.6	23
18	Bacterial and Fungal Diversity of Quaternary Cave Sediment Deposits. Geomicrobiology Journal, 2014, 31, 116-127.	1.0	22

#	Article	IF	CITATIONS
19	Ancient human footprints in <scp>C</scp> iurâ€ <scp>I</scp> zbuc <scp>C</scp> ave, <scp>R</scp> omania. American Journal of Physical Anthropology, 2014, 155, 128-135.	2.1	22
20	Management of water bodies in show caves – A microbial approach. Tourism Management, 2020, 78, 104037.	5.8	21
21	Invertebrate fossils from cave sediments: a new proxy for pre-Quaternary paleoenvironments. Biogeosciences, 2011, 8, 1825-1837.	1.3	20
22	Local- versus broad-scale environmental drivers of continental <i>β</i> -diversity patterns in subterranean spider communities across Europe. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191579.	1.2	20
23	Monitoring Human Impact in Show Caves. A Study of Four Romanian Caves. Sustainability, 2021, 13, 1619.	1.6	20
24	Response of invertebrates from the hyporheic zone of chalk rivers to eutrophication and land use. Environmental Science and Pollution Research, 2016, 23, 4729-4740.	2.7	18
25	Wildlife and infrastructure: impact of wind turbines on bats in the Black Sea coast region. European Journal of Wildlife Research, 2020, 66, 1.	0.7	18
26	Beetles. , 2012, , 54-62.		17
27	Novel approach to microbiological air monitoring in show caves. Aerobiologia, 2018, 34, 445-468.	0.7	17
28	Water Quality and Hydrogeochemical Characteristics of Some Karst Water Sources in Apuseni Mountains, Romania. Water (Switzerland), 2021, 13, 857.	1.2	17
29	Conservation of biodiversity in Romania. Biodiversity and Conservation, 2000, 9, 1187-1198.	1.2	16
30	Spatial distribution patterns of the hyporheic invertebrate communities in a polluted river in Romania. Hydrobiologia, 2011, 669, 63-82.	1.0	16
31	INFLUENCE OF ROSIA POIENI AND ROSIA MONTANA MINING AREAS ON THE WATER QUALITY OF THE ARIES RIVER. Environmental Engineering and Management Journal, 2011, 10, 23-29.	0.2	16
32	Assessment of Lithium, Macro- and Microelements in Water, Soil and Plant Samples from Karst Areas in Romania. Materials, 2021, 14, 4002.	1.3	14
33	Distribution patterns of subsurface copepods and the impact of environmental parameters. Limnologica, 2012, 42, 156-164.	0.7	13
34	Yearly microbial cycle of human exposed surfaces in show caves. Subterranean Biology, 0, 31, 1-14.	5.0	12
35	Biodiversity and Ecology of Fauna in Percolating Water in Selected Slovenian and Romanian Caves. Acta Carsologica, 2012, 36, .	0.3	12
36	The dilemma of self-citation in taxonomy. Nature Ecology and Evolution, 2021, 5, 2-2.	3.4	11

#	Article	IF	CITATIONS
37	Continental data on cave-dwelling spider communities across Europe (Arachnida: Araneae). Biodiversity Data Journal, 2019, 7, e38492.	0.4	11
38	Database of Romanian cave invertebrates with a Red List of cave species and a list of hotspot/coldspot caves. Biodiversity Data Journal, 2020, 8, e53571.	0.4	11
39	Population size and dispersal patterns for a Drimeotus (Coleoptera, Leiodidae, Leptodirini) cave population. Subterranean Biology, 0, 11, 31-44.	5.0	11
40	Where Cave Animals Live. Ecological Studies, 2018, , 23-37.	0.4	9
41	Caves and karst of Ecuador – state-of-the-art and research perspectives. Physical Geography, 2019, 40, 28-51.	0.6	9
42	Potential for Natural Attenuation of Domestic and Agricultural Pollution in Karst Groundwater Environments. Water (Switzerland), 2022, 14, 1597.	1.2	9
43	The Gram-Negative Bacilli Isolated from Caves—Sphingomonas paucimobilis and Hafnia alvei and a Review of Their Involvement in Human Infections. International Journal of Environmental Research and Public Health, 2022, 19, 2324.	1.2	8
44	Temporal variability of fauna and the importance of sampling frequency in the hyporheic zone. Hydrobiologia, 2015, 755, 27-38.	1.0	7
45	Drip heterogeneity and the impact of decreased flow rates on the vadose zone fauna in Ciurâ€Izbuc Cave, NW Romania. Ecohydrology, 2018, 11, e2028.	1.1	7
46	Testing Different Membrane Filters for 16S rRNA Gene-Based Metabarcoding in Karstic Springs. Water (Switzerland), 2020, 12, 3400.	1.2	7
47	Radiological Risk Assessment for Karstic Springs Used as Drinking Water in Rural Romania. Atmosphere, 2021, 12, 1207.	1.0	7
48	Monitoring and risk assessment for groundwater sources in rural communities of Romania (GROUNDWATERISK). Research Ideas and Outcomes, 0, 5, .	1.0	7
49	The relationships between land cover, climate and cave copepod spatial distribution and suitability along the Carpathians. Environmental Conservation, 2014, 41, 206-216.	0.7	6
50	Fossil invertebrates records in cave sediments and paleoenvironmental assessments – a study of four cave sites from Romanian Carpathians. Biogeosciences, 2016, 13, 483-497.	1.3	6
51	An Overview on the Aquatic Cave Fauna. Ecological Studies, 2018, , 173-194.	0.4	6
52	Simultaneous Determination of As, Bi, Sb, Se, Te, Hg, Pb and Sn by Small-Sized Electrothermal Vaporization Capacitively Coupled Plasma Microtorch Optical Emission Spectrometry Using Direct Liquid Microsampling. Molecules, 2021, 26, 2642.	1.7	6
53	Assessing copepod (Crustacea: Copepoda) species richness at different spatial scales in northwestern Romanian caves. Subterranean Biology, 0, 9, 103-112.	5.0	5
54	Ecophysiological groups of bacteria from cave sediments as potential indicators of paleoclimate. Quaternary International, 2017, 432, 20-32.	0.7	5

#	Article	IF	CITATIONS
55	Health Risk Assessment in Southern Carpathians Small Rural Communities Using Karst Springs as a Drinking Water Source. International Journal of Environmental Research and Public Health, 2022, 19, 234.	1.2	5
56	Reconsidering Pholeuon C. Hampe (Coleoptera: Leiodidae: Cholevinae), with the description of a new subgenus. Zootaxa, 2007, 1449, 31-43.	0.2	4
57	Contrasting copepod community dynamics related to sampling strategies in the unsaturated zone of a karst aquifer. Aquatic Ecology, 2015, 49, 549-560.	0.7	4
58	Historical Biogeography of Subterranean Beetles – "Plato's Cave―or Scientific Evidence?. Acta Carsologica, 2012, 36, .	0.3	4
59	Cave Protection in Romania. Cave and Karst Systems of the World, 2019, , 537-541.	0.1	4
60	Application of Inductively Coupled Plasma Spectrometric Techniques and Multivariate Statistical Analysis in the Hydrogeochemical Profiling of Caves—Case Study Cloșani, Romania. Molecules, 2021, 26, 6788.	1.7	4
61	An annotated checklist of groundwater Cyclopoida and Harpacticoida (Crustacea, Copepoda) from Romania with notes on their distribution and ecology. Subterranean Biology, 0, 41, 87-108.	5.0	4
62	Oribatid mite fossils from pre-Quaternary sediments in Slovenian caves II. <i>Amiracarus pliocennatus</i> n.gen., n.sp. (Microzetidae) from Pliocene, with comments on the other species of the genus. Zootaxa, 2013, 3670, 557-78.	0.2	3
63	Compact mole fraction-dependent modeling of I-V and C-V characteristics in Al \$\$_{x}\$\$ x Ga \$\$_{1-x}\$\$ 1 - x N/GaN HEMTs. Journal of Computational Electronics, 2018, 17, 224-229.	1.3	2
64	Morphological and Micromorphological Description of the Larvae of Two Endemic Species of Duvalius (Coleoptera, Carabidae, Trechini). Biology, 2021, 10, 627.	1.3	2
65	ASSESSMENT OF POLLUTANTS INPUT OF ACID MINE DRAINAGE AND DOMESTIC ACTIVITIES IN ARIES RIVER WATER, ROMANIA - A CHEMOMETRIC APPROACH. Environmental Engineering and Management Journal, 2015, 14, 2567-2576.	0.2	2
66	Comment on "Assessing preservation priorities of caves and karst areas using the frequency of endemic cave-dwelling species―by Nitzu et al. (2018), Int. J. Speleol., 47 (1): 43-52. International Journal of Speleology, 2019, 48, 107-109.	0.4	2
67	A 16S rRNA Gene-Based Metabarcoding of Phosphate-Rich Deposits in Muierilor Cave, South-Western Carpathians. Frontiers in Microbiology, 2022, 13, .	1.5	1
68	Invertebrate fossils found in cave sediments as proxies for Pliocene/Pleistocene paleoenvironment. Quaternary International, 2012, 279-280, 332.	0.7	0
69	Cave Biology. Cave and Karst Systems of the World, 2019, , 485-492.	0.1	0
70	One step forward for subterranean biology. Subterranean Biology, 0, 11, 1-2.	5.0	0
71	A tribute to Cheorge Racoviţă (1940–2015). Subterranean Biology, 0, 19, 87-88.	5.0	0
72	Can the subterranean fauna be used as proxy for past environmental changes? – the example of the Carpathians cave fauna. ARPHA Conference Abstracts, 0, 1, .	0.0	0

#	Article	IF	CITATIONS
73	The paleoenvironmental reconstruction using fossil invertebrates of Zăton Lake (south-western) Tj ETQq1 1 0.7	84314 rgl	3T /Overlock
74	Small Human Population Drastic Impact, as Inferred From Multi-Proxies of a Temporary Carpathian Lake. Frontiers in Earth Science, 2022, 10, .	0.8	0
75	Groundwater contamination and human health risk assessment in the main karst areas of Romania. ARPHA Conference Abstracts, 0, 5, .	0.0	0
76	The ground beetles (Coleoptera, Carabidae) from the René Jeannel collection of the Babeș-Bolyai University Zoological Museum, Romania. ARPHA Conference Abstracts, 0, 5, .	0.0	0
77	Quantitative microbial risk assessment as a tool for groundwater monitoring. A case study in the rural communities of Romania. ARPHA Conference Abstracts, 0, 5, .	0.0	0
78	The genus Protopholeuon (Coleoptera, Leptodirini):Âdistribution, morphological, ultratructural and genetic details. ARPHA Conference Abstracts, 0, 5, .	0.0	0
79	Is the gut microbiome involved in adaptation of beetles to caves?. ARPHA Conference Abstracts, 0, 5, .	0.0	0
80	Occurrence of Li in groundwaters and plants from Dobrogea karst area, Romania. ARPHA Conference Abstracts, 0, 5, .	0.0	0