
Richard E Clark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2999092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Outcomes of older patients aged 60 to 70 years undergoing reduced intensity transplant for acute myeloblastic leukemia: results of the NCRI acute myeloid leukemia 16 trial. Haematologica, 2022, 107, 1518-1527.	1.7	18
2	The UK SPIRIT 1 trial in newly diagnosed chronic myeloid leukaemia. British Journal of Haematology, 2022, , .	1.2	1
3	Ponatinib with fludarabine, cytarabine, idarubicin, and granulocyte colony-stimulating factor chemotherapy for patients with blast-phase chronic myeloid leukaemia (MATCHPOINT): a single-arm, multicentre, phase 1/2 trial. Lancet Haematology,the, 2022, 9, e121-e132.	2.2	21
4	A randomised comparison of <scp>FLAG″da</scp> versus daunorubicin combined with clofarabine in relapsed or refractory acute myeloid leukaemia: Results from the <scp>UK NCRI AML17</scp> trial. British Journal of Haematology, 2022, , .	1.2	0
5	A retrospective observational research study to describe the realâ€world use of bosutinib in patients with chronic myeloid leukemia in the United Kingdom and the Netherlands. European Journal of Haematology, 2022, 109, 90-99.	1.1	4
6	Bosutinib versus imatinib for newly diagnosed chronic phase chronic myeloid leukemia: final results from the BFORE trial. Leukemia, 2022, 36, 1825-1833.	3.3	43
7	Long-term outcomes with frontline nilotinib versus imatinib in newly diagnosed chronic myeloid leukemia in chronic phase: ENESTnd 10-year analysis. Leukemia, 2021, 35, 440-453.	3.3	159
8	Additional chromosomal abnormalities at chronic myeloid leukemia diagnosis predict an increased risk of progression. Blood Advances, 2021, 5, 1102-1109.	2.5	25
9	Discovery of a Novel CIP2A Variant (NOCIVA) with Clinical Relevance in Predicting TKI Resistance in Myeloid Leukemias. Clinical Cancer Research, 2021, 27, 2848-2860.	3.2	11
10	Defining the Optimal Total Number of Chemotherapy Courses in Younger Patients With Acute Myeloid Leukemia: A Comparison of Three Versus Four Courses. Journal of Clinical Oncology, 2021, 39, 890-901.	0.8	20
11	Validation of CIP2A as a Biomarker of Subsequent Disease Progression and Treatment Failure in Chronic Myeloid Leukaemia. Cancers, 2021, 13, 2155.	1.7	4
12	A randomised evaluation of lowâ€dose cytosine arabinoside (araâ€C) plus tosedostat <i>versus</i> lowâ€dose araâ€C in older patients with acute myeloid leukaemia: results of the Llâ€1 trial. British Journal of Haematology, 2021, 194, 298-308.	1.2	6
13	Randomized evaluation of quizartinib and low-dose ara-C vs low-dose ara-C in older acute myeloid leukemia patients. Blood Advances, 2021, 5, 5621-5625.	2.5	11
14	Realâ€world tyrosine kinase inhibitor treatment pathways, monitoring patterns and responses in patients with chronic myeloid leukaemia in the United Kingdom: the UK TARGET CML study. British Journal of Haematology, 2021, 192, 62-74.	1.2	18
15	CD93 is expressed on chronic myeloid leukemia stem cells and identifies a quiescent population which persists after tyrosine kinase inhibitor therapy. Leukemia, 2020, 34, 1613-1625.	3.3	46
16	Another set of guidelines for chronic myeloid leukaemia. British Journal of Haematology, 2020, 191, 147-149.	1.2	1
17	Selection and management of older patients with acute myeloid leukemia treated with glasdegib plus low-dose cytarabine: expert panel review. Leukemia and Lymphoma, 2020, 61, 3287-3305.	0.6	2
18	The EUTOS long-term survival (ELTS) score is superior to the Sokal score for predicting survival in chronic myeloid leukemia. Leukemia, 2020, 34, 2138-2149.	3.3	55

#	Article	IF	CITATIONS
19	Molecular monitoringÂduringÂdose reduction predicts recurrence after TKI cessation in CML. Blood, 2020, 135, 766-769.	0.6	20
20	Bosutinib (BOS) Versus Imatinib for Newly Diagnosed Chronic Phase (CP) Chronic Myeloid Leukemia (CML): Final 5-Year Results from the Bfore Trial. Blood, 2020, 136, 41-42.	0.6	27
21	Serotonin re-uptake transporter gene polymorphisms are associated with imatinib-induced diarrhoea in chronic myeloid leukaemia patients. Scientific Reports, 2020, 10, 8394.	1.6	5
22	The chronic myeloid leukaemia story in the United Kingdom since 1960. British Journal of Haematology, 2020, 191, 521-526.	1.2	5
23	Cancerous inhibitor of protein phosphatase 2A (CIP2A) modifies energy metabolism via 5′ AMP-activated protein kinase signalling in malignant cells. Biochemical Journal, 2019, 476, 2255-2269.	1.7	6
24	De-escalation of tyrosine kinase inhibitor therapy before complete treatment discontinuation in patients with chronic myeloid leukaemia (DESTINY): a non-randomised, phase 2 trial. Lancet Haematology,the, 2019, 6, e375-e383.	2.2	129
25	Tyrosine Kinase Inhibitor Therapy Discontinuation for Patients with Chronic Myeloid Leukaemia in Clinical Practice. Current Hematologic Malignancy Reports, 2019, 14, 507-514.	1.2	22
26	Prognosis of patients with chronic myeloid leukemia presenting in advanced phase is defined mainly by blast count, but also by age, chromosomal aberrations and hemoglobin. American Journal of Hematology, 2019, 94, 1236-1243.	2.0	17
27	The effect on lymphocyte subsets of decreasing/stopping tyrosine kinase inhibitor therapy in chronic myeloid leukaemia: data from the DESTINY trial. British Journal of Haematology, 2019, 185, 791-793.	1.2	6
28	Nilotinib-induced metabolic dysfunction: insights from a translational study using in vitro adipocyte models and patient cohorts. Leukemia, 2019, 33, 1810-1814.	3.3	13
29	FLAG-IDA and Ponatinib in Patients with Blast Phase Chronic Myeloid Leukaemia: Results from the Phase I/II UK Trials Acceleration Programme Matchpoint Trial. Blood, 2019, 134, 497-497.	0.6	18
30	Long-Term Outcomes in Patients with Chronic Myeloid Leukemia in Chronic Phase Receiving Frontline Nilotinib Versus Imatinib: Enestnd 10-Year Analysis. Blood, 2019, 134, 2924-2924.	0.6	22
31	Introducing a Predictive Score for Successful Treatment Free Remission in Chronic Myeloid Leukemia (CML). Blood, 2019, 134, 26-26.	0.6	8
32	Cardiac, vascular, and hypertension safety of bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia in the BFORE trial Journal of Clinical Oncology, 2019, 37, 7051-7051.	0.8	1
33	Targeting BCR-ABL-Independent TKI Resistance in Chronic Myeloid Leukemia by mTOR and Autophagy Inhibition. Journal of the National Cancer Institute, 2018, 110, 467-478.	3.0	76
34	CIP2A- and SETBP1-mediated PP2A inhibition reveals AKT S473 phosphorylation to be a new biomarker in AML. Blood Advances, 2018, 2, 964-968.	2.5	15
35	Addition of the mammalian target of rapamycin inhibitor, everolimus, to consolidation therapy in acute myeloid leukemia: experience from the UK NCRI AML17 trial. Haematologica, 2018, 103, 1654-1661.	1.7	14
36	Spirit 2: Final 5 Year Analysis of the UK National Cancer Research Institute Randomized Study Comparing Imatinib with Dasatinib in Patients with Newly Diagnosed Chronic Phase CML. Blood, 2018, 132, 457-457.	0.6	10

#	Article	IF	CITATIONS
37	E14a2 <i>BCR-ABL1</i> transcript is associated with a higher rate of treatment-free remission in individuals with chronic myeloid leukemia after stopping tyrosine kinase inhibitor therapy. Haematologica, 2017, 102, e297-e299.	1.7	42
38	De-escalation of tyrosine kinase inhibitor dose in patients with chronic myeloid leukaemia with stable major molecular response (DESTINY): an interim analysis of a non-randomised, phase 2 trial. Lancet Haematology,the, 2017, 4, e310-e316.	2.2	97
39	Axl Blockade by BGB324 Inhibits BCR-ABL Tyrosine Kinase Inhibitor–Sensitive and -Resistant Chronic Myeloid Leukemia. Clinical Cancer Research, 2017, 23, 2289-2300.	3.2	38
40	Heterogeneous leukemia stem cells in myeloid blast phase chronic myeloid leukemia. Blood Advances, 2016, 1, 160-169.	2.5	12
41	Evaluating the use of plerixafor in stem cell mobilisation – an economic analysis of the <scp>PHANTASTIC</scp> trial. Journal of Clinical Apheresis, 2016, 31, 434-442.	0.7	13
42	Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia: an international, randomised, open-label, phase 3 trial. Lancet Oncology, The, 2016, 17, 612-621.	5.1	214
43	Defining the dose of gemtuzumab ozogamicin in combination with induction chemotherapy in acute myeloid leukemia: a comparison of 3 mg/m2 with 6 mg/m2 in the NCRI AML17 Trial. Haematologica, 2016, 101, 724-731.	1.7	60
44	An operational definition of primary refractory acute myeloid leukemia allowing early identification of patients who may benefit from allogeneic stem cell transplantation. Haematologica, 2016, 101, 1351-1358.	1.7	70
45	Chronic Myeloid Leukaemia Patients with Stable Molecular Responses (at least MR3) May Safely Decrease the Dose of Their Tyrosine Kinase Inhibitor: Data from the British Destiny Study. Blood, 2016, 128, 938-938.	0.6	5
46	Vosaroxin and vosaroxin plus low-dose Ara-C (LDAC) vs low-dose Ara-C alone in older patients with acute myeloid leukemia. Blood, 2015, 125, 2923-2932.	0.6	46
47	A randomized comparison of daunorubicin 90 mg/m2 vs 60 mg/m2 in AML induction: results from the UK NCRI AML17 trial in 1206 patients. Blood, 2015, 125, 3878-3885.	0.6	230
48	Response to ruxolitinib in patients with intermediateâ€1–, intermediateâ€2–, and highâ€risk myelofibrosis: results of the <scp>UK ROBUST</scp> Trial. British Journal of Haematology, 2015, 170, 29-39.	1.2	82
49	Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): results of a randomised, controlled, phase 3 trial. Lancet Oncology, The, 2015, 16, 1295-1305.	5.1	433
50	Evidence that the pregnane <scp>X</scp> and retinoid receptors <scp>PXR</scp> , <scp> RAR</scp> and <scp>RXR</scp> may regulate transcription of the transporter <i>h<scp>OCT</scp>1</i> in chronic myeloid leukaemia cells. European Journal of Haematology, 2015, 94, 74-78.	1.1	13
51	Treatment and Outcome Analysis of 2,904 Pateints from the EUTOS Population Based Registry. Blood, 2015, 126, 2780-2780.	0.6	1
52	PP2A Inhibition By CIP2A or SETBP1 Leads to Elevated Levels of AKT S473 Which Can be Used As a Biomarker of Outcome in Acute Myeloid Leukaemia. Blood, 2015, 126, 1396-1396.	0.6	0
53	BCB324 Inhibits BCR-ABL TKI-Resistant Chronic Myeloid Leukemia. Blood, 2015, 126, 1569-1569.	0.6	0
54	Low leukotriene B4 receptor 1 leads to ALOX5 downregulation at diagnosis of chronic myeloid leukemia. Haematologica, 2014, 99, 1710-1715.	1.7	13

#	Article	IF	CITATIONS
55	CMV–IMPACT: Results of a Randomized Controlled Trial of Immuno-Prophylactic Adoptive Cellular Therapy following Sibling Donor Allogeneic HSCT. Blood, 2014, 124, 1109-1109.	0.6	5
56	A Comparison of Single Dose Gemtuzumab Ozogamicin 3mg/m2 and 6mg/m2 Combined with Induction Chemotherapy in Younger Patients with AML: Data from the UK NCRI AML17 Trial. Blood, 2014, 124, 2308-2308.	0.6	2
57	Baseline Characteristics of CML Patients Accross Europe - Comparing Real-World Patients with Patient Collectives Included in Clinical Trials. Blood, 2014, 124, 3160-3160.	0.6	2
58	A Randomised Comparison of the Sequential Addition of the FLT3 Inhibitor Lestaurtinib (CEP701) to Standard First Line Chemotherapy for FLT3-Mutated Acute Myeloid Leukemia: The UK Experience. Blood, 2014, 124, 3736-3736.	0.6	3
59	Efficacy and Safety of Nilotinib (NIL) vs Imatinib (IM) in Patients (pts) With Newly Diagnosed Chronic Myeloid Leukemia in Chronic Phase (CML-CP): Long-Term Follow-Up (f/u) of ENESTnd. Blood, 2014, 124, 4541-4541.	0.6	42
60	Spirit 2: An NCRI Randomised Study Comparing Dasatinib with Imatinib in Patients with Newly Diagnosed CML. Blood, 2014, 124, 517-517.	0.6	18
61	Epic: A Phase 3 Trial of Ponatinib Compared with Imatinib in Patients with Newly Diagnosed Chronic Myeloid Leukemia in Chronic Phase (CP-CML). Blood, 2014, 124, 519-519.	0.6	30
62	A Randomised Comparison of Daunorubicin 90mg/m2 Vs 60mg/m2 in AML Induction: Results from the UK NCRI AML17 Trial in 1206 Patients. Blood, 2014, 124, 7-7.	0.6	4
63	ENESTnd 5-year (y) update: Long-term outcomes of patients (pts) with chronic myeloid leukemia in chronic phase (CML-CP) treated with frontline nilotinib (NIL) versus imatinib (IM) Journal of Clinical Oncology, 2014, 32, 7073-7073.	0.8	21
64	A Randomised Assessment of Vosaroxin Monotherapy and Vosaroxin Combined with Low Dose Ara-C Versus Low Dose Ara-C in Older Patients with Acute Myeloid Leukaemia. Blood, 2014, 124, 3747-3747.	0.6	0
65	Leukemia Stem Cell Potential of Different Progenitor Subpopulations in Myeloid Blast Phase CML. Blood, 2014, 124, 3489-3489.	0.6	0
66	BGB324 Represents an Axl and BCR-ABL1 Inhibitor with Activity in the T315I Mutant. Blood, 2014, 124, 4512-4512.	0.6	1
67	Incidence of CML in Europe—a Comparison of 19 European Countries with US SEER Data. Blood, 2014, 124, 3145-3145.	0.6	2
68	A population study showing that the advent of second generation tyrosine kinase inhibitors has improved progression-free survival in chronic myeloid leukaemia. Leukemia Research, 2013, 37, 752-758.	0.4	13
69	European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood, 2013, 122, 872-884.	0.6	1,743
70	CML Patients In Clinical Trials Represent Fairly Well The General Population Of CML Patients: A Comparative Analysis Of 5803 Patients From The EUTOS Registry. Blood, 2013, 122, 2735-2735.	0.6	1
71	Reasons For Survival Improvement In Core Binding Factor AML: A 25 Year Analysis Of The UK MRC/NCRI AML Trials. Blood, 2013, 122, 358-358.	0.6	9
72	AC220 (Quizartinib) Can Be Safely Combined With Conventional Chemotherapy In Older Patients With Newly Diagnosed Acute Myeloid Leukaemia: Experience From The AML18 Pilot Trial. Blood, 2013, 122, 622-622.	0.6	24

#	Article	IF	CITATIONS
73	ENESTnd Update: Nilotinib (NIL) Vs Imatinib (IM) In Patients (pts) With Newly Diagnosed Chronic Myeloid Leukemia In Chronic Phase (CML-CP) and The Impact Of Early Molecular Response (EMR) and Sokal Risk At Diagnosis On Long-Term Outcomes. Blood, 2013, 122, 92-92.	0.6	34
74	Dose Interruption/Reduction Of Tyrosine Kinase Inhibitors In The First 3 Months Of Treatment of CML Is Associated With Inferior Early Molecular Responses and Predicts For An Increased Likelihood Of Discontinuation Of The 1st Line Agent. Blood, 2013, 122, 93-93.	0.6	2
75	Nilotinib versus imatinib in patients (pts) with newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP): ENESTnd 4-year (y) update Journal of Clinical Oncology, 2013, 31, 7052-7052.	0.8	5
76	Outcome Of Pregnancy After Autologous Hematopoietic Stem Cell Transplantation (AHSCT) For Autoimmune Diseases (AD): A Retrospective Study Of The EBMT Autoimmune Diseases Working Party (ADWP). Blood, 2013, 122, 4640-4640.	0.6	0
77	Axl Represents a Therapeutic Target In T315I-Mutated and WT Chronic Myeloid Leukemia. Blood, 2013, 122, 1469-1469.	0.6	0
78	Peroxisome proliferator–activated receptor activation increases imatinib uptake and killing of chronic myeloid leukemia cells. Experimental Hematology, 2012, 40, 811-819.e2.	0.2	18
79	Enestnd 4-Year (y) Update: Continued Superiority of Nilotinib Vs Imatinib in Patients (pts) with Newly Diagnosed Philadelphia Chromosome–Positive (Ph+) Chronic Myeloid Leukemia in Chronic Phase (CML-CP). Blood, 2012, 120, 1676-1676.	0.6	21
80	BCR-ABL peptide vaccination in healthy subjects: Immunological responses are equivalent to those in chronic myeloid leukaemia patients. Leukemia Research, 2011, 35, 369-372.	0.4	13
81	Assessment of BCR-ABL1 Transcript Levels At 3 Months Is the Only Requirement for Predicting Outcome for Patients with Chronic Myeloid Leukemia Treated with Imatinib. Blood, 2011, 118, 1680-1680.	0.6	3
82	Nilotinib Shows Safety and Efficacy in Older Patients (≥ 65 years) with Newly Diagnosed Chronic Myeloid Leukemia in Chronic Phase Comparable with That in Younger Patients with Chronic Myeloid Leukemia in Chronic Phase: Results From ENESTnd,. Blood, 2011, 118, 3768-3768.	0.6	7
83	The Predictive Value of Early Molecular Response in Chronic Phase CML Patients Treated with Dasatinib First Line Therapy. Blood, 2011, 118, 785-785.	0.6	3
84	EVI-1 oncogene expression predicts survival in chronic-phase CML patients resistant to imatinib treated with second-generation tyrosine kinase inhibitors. Blood, 2010, 116, 6014-6017.	0.6	29
85	Nilotinib versus Imatinib for Newly Diagnosed Chronic Myeloid Leukemia. New England Journal of Medicine, 2010, 362, 2251-2259.	13.9	1,497
86	Simultaneous determination of nilotinib, imatinib and its main metabolite (CGP-74588) in human plasma by ultra-violet high performance liquid chromatography. Leukemia Research, 2010, 34, 702-707.	0.4	49
87	KIR2DS1 Genotype Predicts for Cytogenetic Response, Progression-Free Survival and Overall Survival In Patients with Chronic Phase CML on Imatinib. Blood, 2010, 116, 888-888.	0.6	0
88	Analysis of BCR-ABL1 Tyrosine Kinase Domain Mutations In Primitive Chronic Myeloid Leukemia Cells Identifies a Unique Mutator Phenotype Blood, 2010, 116, 3397-3397.	0.6	0
89	Facts and uncertainties in monitoring treatment response in chronic myeloid leukaemia. Leukemia Research, 2009, 33, 1151-1155.	0.4	8
90	Nilotinib Demonstrates Superior Efficacy Compared with Imatinib in Patients with Newly Diagnosed Chronic Myeloid Leukemia in Chronic Phase: Results From the International Randomized Phase III ENESTnd Trial. Blood, 2009, 114, LBA-1-LBA-1.	0.6	20

#	Article	IF	CITATIONS
91	Placental Growth Factor: a Novel, Stromal-Derived Target in Human CML Blood, 2009, 114, 42-42.	0.6	0
92	Pharmacologic markers and predictors of responses to imatinib therapy in patients with chronic myeloid leukemia. Leukemia and Lymphoma, 2008, 49, 639-642.	0.6	22
93	Effective dasatinib uptake may occur without human organic cation transporter 1 (hOCT1): implications for the treatment of imatinib-resistant chronic myeloid leukemia. Blood, 2008, 112, 3348-3354.	0.6	115
94	T-Cell Depleted Unrelated Donor Stem Cell Transplants Appear to Be of Value for Adult Philadelphia Chromosome Negative ALL Patients and Should Be Evaluated Prospectively in New Large Group Studies. Blood, 2008, 112, 4413-4413.	0.6	0
95	Evidence that a BCR–ABL fusion peptide does not induce lymphocyte proliferation or cytokine production in vitro. Leukemia Research, 2007, 31, 1675-1681.	0.4	2
96	Immunotherapeutic strategies in chronic myeloid leukemia. Current Hematologic Malignancy Reports, 2007, 2, 89-94.	1.2	2
97	The role of serial BCR-ABL transcript monitoring in predicting the emergence of BCR-ABL kinase mutations in imatinib-treated patients with chronic myeloid leukemia. Haematologica, 2006, 91, 235-9.	1.7	48
98	hOCT 1 and resistance to imatinib. Blood, 2005, 106, 1133-1134.	0.6	196
99	Circulating bcr-abl-specific CD8+ T cells in chronic myeloid leukemia patients and healthy subjects. Haematologica, 2005, 90, 1315-23.	1.7	37
100	Successful Outcome of Pregnancy in Chronic Myeloid Leukaemia Treated with Imatinib. Leukemia and Lymphoma, 2004, 45, 1307-1308.	0.6	54
101	Active transport of imatinib into and out of cells: implications for drug resistance. Blood, 2004, 104, 3739-3745.	0.6	598
102	Frequency of Blast Crisis after Achieving Complete Cytogenetic Remission in First Chronic Phase CML Patients Who Recieved Imatinib Therapy within Six Months of Diagnosis Blood, 2004, 104, 1021-1021.	0.6	2
103	The early molecular response to imatinib predicts cytogenetic and clinical outcome in chronic myeloid leukaemia. British Journal of Haematology, 2003, 120, 990-999.	1.2	133
104	Bone Turnover Following Autologous Transplantation in Multiple Myeloma. Leukemia and Lymphoma, 2002, 43, 511-516.	0.6	6
105	Direct evidence that leukemic cells present HLA-associated immunogenic peptides derived from the BCR-ABL b3a2 fusion protein. Blood, 2001, 98, 2887-2893.	0.6	231
106	HLA-A3 increases and HLA-DR1 decreases the risk of acute graft-versus-host disease after HLA-matched sibling bone marrow transplantation for chronic myelogenous leukaemia. British Journal of Haematology, 2001, 114, 36-41.	1.2	17
107	BCR-ABL Fusion Peptides and Cytotoxic T Cells in Chronic Myeloid Leukaemia. Leukemia and Lymphoma, 2001, 42, 871-880.	0.6	17
108	b3a2 BCR-ABL fusion peptides as targets for cytotoxic T cells in chronic myeloid leukaemia. British Journal of Haematology, 2000, 109, 616-621.	1.2	41

#	Article	IF	CITATIONS
109	Biochemical markers of bone turnover following high-dose chemotherapy and autografting in multiple myeloma. Blood, 2000, 96, 2697-2702.	0.6	40
110	Identification of a Good C- <i>MYC</i> Antisense Oligodeoxynucleotide Target Site and the Inactivity at This Site of Novel NCH Triplet-Targeting Ribozymes. Nucleosides & Nucleotides, 1999, 18, 1935-1944.	0.5	3
111	Molecular status of individual CFU-GM colonies derived from chemotherapy-mobilised peripheral blood stem cells in chronic myeloid leukaemia. , 1997, 18, 292-298.		7
112	Molecular status of individual CFU-GM colonies derived from chemotherapy-mobilised peripheral blood stem cells in chronic myeloid leukaemia. , 1997, 18, 292.		1
113	Severe hypophosphataemia during stem cell harvesting in chronic myeloid leukaemia. British Journal of Haematology, 1995, 90, 450-452.	1.2	12
114	Transplantation of t-lymphocyte depleted marrow with an addback of T cells. Hematological Oncology, 1995, 13, 219-224.	0.8	5
115	Poor Cellular Uptake of Antisense Oligodeoxynucleotieds: An Obstacle to their Use in Chronic Myeloid Leukaemia. Leukemia and Lymphoma, 1995, 19, 189-195.	0.6	18
116	Long-Term Bone Marrow Cultures Established from Bone Marrow Transplant Recipients. Leukemia and Lymphoma, 1993, 12, 117-122.	0.6	4