Carla M Caramella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2999004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Composite Nanosystem as a Potential Tool for the Local Treatment of Glioblastoma: Chitosan-Coated Solid Lipid Nanoparticles Embedded in Electrospun Nanofibers. Polymers, 2021, 13, 1371.	4.5	12
2	Biomaterials for Soft Tissue Repair and Regeneration: A Focus on Italian Research in the Field. Pharmaceutics, 2021, 13, 1341.	4.5	20
3	Nanotechnology-Based Medical Devices for the Treatment of Chronic Skin Lesions: From Research to the Clinic. Pharmaceutics, 2020, 12, 815.	4.5	27
4	Collagen/PCL Nanofibers Electrospun in Green Solvent by DOE Assisted Process. An Insight into Collagen Contribution. Materials, 2020, 13, 4698.	2.9	28
5	Hyaluronic acid and chitosan-based nanosystems: a new dressing generation for wound care. Expert Opinion on Drug Delivery, 2019, 16, 715-740.	5.0	74
6	Bioactive Medications for the Delivery of Platelet Derivatives to Skin Wounds. Current Drug Delivery, 2019, 16, 472-483.	1.6	10
7	Freeze dried chitosan acetate dressings with glycosaminoglycans and traxenamic acid. Carbohydrate Polymers, 2018, 184, 408-417.	10.2	43
8	Rheological analysis and mucoadhesion: A 30 year-old and still active combination. Journal of Pharmaceutical and Biomedical Analysis, 2018, 156, 232-238.	2.8	42
9	Association of Alpha Tocopherol and Ag Sulfadiazine Chitosan Oleate Nanocarriers in Bioactive Dressings Supporting Platelet Lysate Application to Skin Wounds. Marine Drugs, 2018, 16, 56.	4.6	19
10	The effect of the antioxidant on the properties of thiolated poly(aspartic acid) polymers in aqueous ocular formulations. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 113, 178-187.	4.3	6
11	A novel ionic amphiphilic chitosan derivative as a stabilizer of nanoemulsions: Improvement of antimicrobial activity of Cymbopogon citratus essential oil. Colloids and Surfaces B: Biointerfaces, 2017, 152, 385-392.	5.0	48
12	Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomaterialia, 2017, 57, 216-224.	8.3	125
13	Freeze-dried cylinders carrying chitosan nanoparticles for vaginal peptide delivery. Carbohydrate Polymers, 2017, 170, 43-51.	10.2	52
14	Application of DoE approach in the development of mini-capsules, based on biopolymers and manuka honey polar fraction, as powder formulation for the treatment of skin ulcers. International Journal of Pharmaceutics, 2017, 516, 266-277.	5.2	9
15	Chitosan-coupled solid lipid nanoparticles: Tuning nanostructure and mucoadhesion. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 110, 13-18.	4.3	57
16	Wound Healing: Hemoderivatives and Biopolymers. , 2017, , 1642-1660.		1
17	Cationic Thiolated Poly(aspartamide) Polymer as a Potential Excipient for Artificial Tear Formulations. Journal of Ophthalmology, 2016, 2016, 1-8.	1.3	7
18	Particulate systems based on pectin/chitosan association for the delivery of manuka honey components and platelet lysate in chronic skin ulcers. International Journal of Pharmaceutics, 2016, 509, 59-70.	5.2	31

#	Article	IF	CITATIONS
19	Platelet lysate and chondroitin sulfate loaded contact lenses to heal corneal lesions. International Journal of Pharmaceutics, 2016, 509, 188-196.	5.2	22
20	Platelet Lysate-Modified Porous Silicon Microparticles for Enhanced Cell Proliferation in Wound Healing Applications. ACS Applied Materials & Interfaces, 2016, 8, 988-996.	8.0	33
21	Sponge-Like Dressings Based on the Association of Chitosan and Sericin for the Treatment of Chronic Skin Ulcers. II. Loading of the Hemoderivative Platelet Lysate. Journal of Pharmaceutical Sciences, 2016, 105, 1188-1195.	3.3	27
22	Sponge-Like Dressings Based on the Association of Chitosan and Sericin for the Treatment of Chronic Skin Ulcers. I. Design of Experiments–Assisted Development. Journal of Pharmaceutical Sciences, 2016, 105, 1180-1187.	3.3	39
23	<i>In vitro</i> testing of thiolated poly(aspartic acid) from ophthalmic formulation aspects. Drug Development and Industrial Pharmacy, 2016, 42, 1241-1246.	2.0	9
24	Controlled delivery systems for tissue repair and regeneration. Journal of Drug Delivery Science and Technology, 2016, 32, 206-228.	3.0	23
25	InÂvitro evaluation of a protective nasal spray: Measurements of mucoadhesion and reconstructive barrier properties towards a tracheobronchial reconstruct. Journal of Drug Delivery Science and Technology, 2015, 30, 368-374.	3.0	6
26	Comparative study of nanosized cross-linked sodium-, linear sodium- and zinc-hyaluronate as potential ocular mucoadhesive drug delivery systems. International Journal of Pharmaceutics, 2015, 494, 321-328.	5.2	25
27	Thiolated poly(aspartic acid) as potential in situ gelling, ocular mucoadhesive drug delivery system. European Journal of Pharmaceutical Sciences, 2015, 67, 1-11.	4.0	66
28	Platelet lysate embedded scaffolds for skin regeneration. Expert Opinion on Drug Delivery, 2015, 12, 525-545.	5.0	39
29	Advances in oral controlled drug delivery: the role of drug–polymer and interpolymer non-covalent interactions. Expert Opinion on Drug Delivery, 2015, 12, 441-453.	5.0	82
30	Drug Release Kinetics and Front Movement in Matrix Tablets Containing Diltiazem or Metoprolol/ <i>λ</i> -Carrageenan Complexes. BioMed Research International, 2014, 2014, 1-8.	1.9	9
31	In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 635-642.	4.3	25
32	Chitosan gel containing polymeric nanocapsules: a new formulation for vaginal drug delivery. International Journal of Nanomedicine, 2014, 9, 3151.	6.7	52
33	Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing. Colloids and Surfaces B: Biointerfaces, 2014, 113, 152-157.	5.0	86
34	Calcium alginate particles for the combined delivery of platelet lysate and vancomycin hydrochloride in chronic skin ulcers. International Journal of Pharmaceutics, 2014, 461, 505-513.	5.2	37
35	Montmorillonite–chitosan–silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: In vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohydrate Polymers, 2014, 102, 970-977.	10.2	96
36	Development of chitosan oleate ionic micelles loaded with silver sulfadiazine to be associated with platelet lysate for application in wound healing. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 643-650.	4.3	78

#	Article	IF	CITATIONS
37	Comparison of poloxamer- and chitosan-based thermally sensitive gels for the treatment of vaginal mucositis. Drug Development and Industrial Pharmacy, 2014, 40, 352-360.	2.0	49
38	Wound dressings based on silver sulfadiazine solid lipid nanoparticles for tissue repairing. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 84-90.	4.3	88
39	In vitro biocompatibility and mucoadhesion of montmorillonite chitosan nanocomposite: A new drug delivery. Applied Clay Science, 2012, 55, 131-137.	5.2	118
40	Development of sponge-like dressings for mucosal/transmucosal drug delivery into vaginal cavity. Pharmaceutical Development and Technology, 2012, 17, 219-226.	2.4	15
41	Preparation and characterization of polysaccharide-based nanoparticles with anticoagulant activity. International Journal of Nanomedicine, 2012, 7, 2975.	6.7	36
42	Thermosensitive eyedrops containing platelet lysate for the treatment of corneal ulcers. International Journal of Pharmaceutics, 2012, 426, 1-6.	5.2	51
43	Platelet lysate formulations based on mucoadhesive polymers for the treatment of corneal lesions. Journal of Pharmacy and Pharmacology, 2011, 63, 189-198.	2.4	60
44	An In Situ Gelling Buccal Spray Containing Platelet Lysate for the Treatment of Oral Mucositis. Current Drug Discovery Technologies, 2011, 8, 277-285.	1.2	35
45	Insulin-Loaded Nanoparticles Based on N-Trimethyl Chitosan: In Vitro (Caco-2 Model) and Ex Vivo (Excised Rat Jejunum, Duodenum, and Ileum) Evaluation of Penetration Enhancement Properties. AAPS PharmSciTech, 2010, 11, 362-371.	3.3	71
46	Mucoadhesive and penetration enhancement properties of three grades of hyaluronic acid using porcine buccal and vaginal tissue, Caco-2 cell lines, and rat jejunum. Journal of Pharmacy and Pharmacology, 2010, 56, 1083-1090.	2.4	86
47	Chitosan-associated SLN: <i>in vitro</i> and <i>ex vivo</i> characterization of cyclosporine A loaded ophthalmic systems. Journal of Microencapsulation, 2010, 27, 735-746.	2.8	70
48	Evaluation of surface and microstructure of differently plasticized chitosan films. Journal of Pharmaceutical and Biomedical Analysis, 2009, 49, 655-659.	2.8	27
49	Cyclosporine A-Loaded Solid Lipid Nanoparticles: Ocular Tolerance and <i>In Vivo</i> Drug Release in Rabbit Eyes. Current Eye Research, 2009, 34, 996-1003.	1.5	77
50	Chitosan and its salts for mucosal and transmucosal delivery. Expert Opinion on Drug Delivery, 2009, 6, 923-939.	5.0	76
51	Cyclosporine A loaded SLNs: Evaluation of cellular uptake and corneal cytotoxicity. International Journal of Pharmaceutics, 2008, 364, 76-86.	5.2	145
52	Chitosan citrate as multifunctional polymer for vaginal delivery. European Journal of Pharmaceutical Sciences, 2008, 33, 166-176.	4.0	53
53	Chitosan Ascorbate: A Chitosan Salt with Improved Penetration Enhancement Properties. Pharmaceutical Development and Technology, 2008, 13, 513-521.	2.4	30
54	Vancomycin–Triacetyl Cyclodextrin Interaction Products for Prolonged Drug Delivery. Pharmaceutical Development and Technology, 2008, 13, 65-73.	2.4	13

#	Article	IF	CITATIONS
55	Platelet Derived Growth Factors in a Mucoadhesive Vehicle for Treatment of Patients with Oral Mucositis in Graft Versus Host Disease. Blood, 2008, 112, 4333-4333.	1.4	1
56	Assessment of Proliferation Induced in Fibroblasts and Rabbit Corneal Epithelial Cells by a Platelet Lysate Formulation: A Stability Study. Blood, 2008, 112, 4072-4072.	1.4	0
57	Nanoparticles based on N-trimethylchitosan: Evaluation of absorption properties using in vitro (Caco-2 cells) and ex vivo (excised rat jejunum) models. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65, 68-77.	4.3	124
58	Wound Dressings Based on Chitosans and Hyaluronic Acid for the Release of Chlorhexidine Diacetate in Skin Ulcer Therapy. Pharmaceutical Development and Technology, 2007, 12, 415-422.	2.4	74
59	Differentiating Factors between Oral Fast-Dissolving Technologies. American Journal of Drug Delivery, 2006, 4, 249-262.	0.6	25
60	Ophthalmic delivery systems based on drug–polymer–polymer ionic ternary interaction: In vitro and in vivo characterization. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 62, 59-69.	4.3	39
61	Chitosan gels for the vaginal delivery of lactic acid: Relevance of formulation parameters to mucoadhesion and release mechanisms. AAPS PharmSciTech, 2006, 7, E141-E147.	3.3	56
62	Buccal penetration enhancement properties of N-trimethyl chitosan: Influence of quaternization degree on absorption of a high molecular weight molecule. International Journal of Pharmaceutics, 2005, 297, 146-155.	5.2	127
63	Buccal Delivery Systems for Peptides. American Journal of Drug Delivery, 2005, 3, 215-225.	0.6	8
64	Assessment of chitosan derivatives as buccal and vaginal penetration enhancers. European Journal of Pharmaceutical Sciences, 2004, 21, 351-359.	4.0	151
65	Carrageenan–gelatin mucoadhesive systems for ion-exchange based ophthalmic delivery: in vitro and preliminary in vivo studies. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 57, 465-472.	4.3	74
66	Buccal Delivery of Acyclovir from Films Based on Chitosan and Polyacrylic Acid. Pharmaceutical Development and Technology, 2003, 8, 199-208.	2.4	79
67	Influence of complex solubility on formulations based on lambda carrageenan and basic drugs. AAPS PharmSciTech, 2002, 3, 83-89.	3.3	18
68	Characterization of chitosan hydrochloride–mucin rheological interaction: influence of polymer concentration and polymer:mucin weight ratio. European Journal of Pharmaceutical Sciences, 2001, 12, 479-485.	4.0	104
69	Characterization of chitosan hydrochloride–mucin interaction by means of viscosimetric and turbidimetric measurements. European Journal of Pharmaceutical Sciences, 2000, 10, 251-257.	4.0	132
70	Factorial analysis of the influence of dissolution medium on drug release from carrageenan-diltiazem complexes. AAPS PharmSciTech, 2000, 1, 72-79.	3.3	27
71	Model-based interpretation of creep profiles for the assessment of polymer-mucin interaction. Pharmaceutical Research, 1999, 16, 1456-1463.	3.5	11
72	Drug Release and Washability of Mucaodhesive Gels Based on Sodium Carboxymethylcelluse and Polyacrylic Acid. Pharmaceutical Development and Technology, 1999, 4, 55-63.	2.4	17

#	Article	IF	CITATIONS
73	Dissolution Enhancement of an Insoluble Drug by Physical Mixture with a Superdisintegrant: Optimization with a Simplex Lattice Design. Pharmaceutical Development and Technology, 1996, 1, 159-164.	2.4	15
74	Characterization of Particle Swelling of Materials of Pharmaceutical Interest. Particle and Particle Systems Characterization, 1990, 7, 131-135.	2.3	3
75	A physical analysis of the phenomenon of tablet disintegration. International Journal of Pharmaceutics, 1988, 44, 177-186.	5.2	33
76	Disintegrating Force as a New Formulation Parameter. Journal of Pharmaceutical Sciences, 1984, 73, 701-705.	3.3	31
77	Wound Healing: Hemoderivatives and Biopolymers. , 0, , 8280-8298.		0