Irene H Heijink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2998890/publications.pdf

Version: 2024-02-01

159585 175258 3,131 87 30 52 citations g-index h-index papers 88 88 88 4063 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Identification of asthma-associated microRNAs in bronchial biopsies. European Respiratory Journal, 2022, 59, 2101294.	6.7	19
2	MicroRNAs Associated with Chronic Mucus Hypersecretion in COPD Are Involved in Fibroblast–Epithelium Crosstalk. Cells, 2022, 11, 526.	4.1	2
3	Role of air pollutants in airway epithelial barrier dysfunction in asthma and COPD. European Respiratory Review, 2022, 31, 210112.	7.1	49
4	miR449 Protects Airway Regeneration by Controlling AURKA/HDAC6-Mediated Ciliary Disassembly. International Journal of Molecular Sciences, 2022, 23, 7749.	4.1	1
5	Acute cigarette smokeâ€induced <scp>eQTL</scp> affects formyl peptide receptor expression and lung function. Respirology, 2021, 26, 233-240.	2.3	7
6	Periostin: contributor to abnormal airway epithelial function in asthma?. European Respiratory Journal, 2021, 57, 2001286.	6.7	27
7	Macrophage–stroma interactions in fibrosis: biochemical, biophysical, and cellular perspectives. Journal of Pathology, 2021, 254, 344-357.	4.5	32
8	Abnormalities in reparative function of lung-derived mesenchymal stromal cells in emphysema. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L832-L844.	2.9	14
9	A Protective Role of FAM13A in Human Airway Epithelial Cells Upon Exposure to Cigarette Smoke Extract. Frontiers in Physiology, 2021, 12, 690936.	2.8	7
10	Adipose Stromal Cell-Secretome Counteracts Profibrotic Signals From IPF Lung Matrices. Frontiers in Pharmacology, 2021, 12, 669037.	3.5	8
11	Dissecting the Role of Mesenchymal Stem Cells in Idiopathic Pulmonary Fibrosis: Cause or Solution. Frontiers in Pharmacology, 2021, 12, 692551.	3.5	17
12	Inhibition of \hat{I}^2 -Catenin/CREB Binding Protein Signaling Attenuates House Dust Mite-Induced Goblet Cell Metaplasia in Mice. Frontiers in Physiology, 2021, 12, 690531.	2.8	2
13	Connecting GWAS Susceptibility Genes in COPD: Do We Need to Consider TGF-Î ² 2?. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 468-470.	2.9	1
14	LL-37 and HMGB1 induce alveolar damage and reduce lung tissue regeneration via RAGE. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L641-L652.	2.9	9
15	Effects of cigarette smoking on SARSâ€CoV â€2 receptor ACE2 expression in the respiratory epithelium â€. Journal of Pathology, 2021, 253, 351-354.	4.5	7
16	MiR-223 is increased in lungs of patients with COPD and modulates cigarette smoke-induced pulmonary inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L1091-L1104.	2.9	9
17	Paracrine Regulation of Alveolar Epithelial Damage and Repair Responses by Human Lung-Resident Mesenchymal Stromal Cells. Cells, 2021, 10, 2860.	4.1	10
18	Mitochondria: at the crossroads of regulating lung epithelial cell function in chronic obstructive pulmonary disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L149-L164.	2.9	68

#	Article	IF	Citations
19	Differential DNA methylation in bronchial biopsies between persistent asthma and asthma in remission. European Respiratory Journal, 2020, 55, 1901280.	6.7	29
20	MiRâ€31â€5p: A shared regulator of chronic mucus hypersecretion in asthma and chronic obstructive pulmonary disease. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 703-706.	5.7	11
21	Current perspectives on the role of interleukin-1 signalling in the pathogenesis of asthma and COPD. European Respiratory Journal, 2020, 55, 1900563.	6.7	67
22	Pellino-1 Regulates the Responses of the Airway to Viral Infection. Frontiers in Cellular and Infection Microbiology, 2020, 10, 456.	3.9	12
23	Identifying a nasal gene expression signature associated with hyperinflation and treatment response in severe COPD. Scientific Reports, 2020, 10, 17415.	3.3	2
24	Join or Leave the Club: Jagged1 and Notch2 Dictate the Fate of Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 4-6.	2.9	6
25	ERS International Congress, Madrid, 2019: highlights from the Basic and Translational Science Assembly. ERJ Open Research, 2020, 6, 00350-2019.	2.6	1
26	Epithelial-interleukin-1 inhibits collagen formation by airway fibroblasts: Implications for asthma. Scientific Reports, 2020, 10, 8721.	3.3	28
27	Epithelial cell dysfunction, a major driver of asthma development. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1902-1917.	5.7	151
28	Link between increased cellular senescence and extracellular matrix changes in COPD. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L48-L60.	2.9	36
29	miR-223: A Key Regulator in the Innate Immune Response in Asthma and COPD. Frontiers in Medicine, 2020, 7, 196.	2.6	51
30	Inhibition of βâ€catenin/CBP signalling improves airway epithelial barrier function and suppresses CCL20 release. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1786-1789.	5.7	3
31	A-Kinase Anchoring Proteins Diminish TGF- \hat{l}^21 /Cigarette Smoke-Induced Epithelial-To-Mesenchymal Transition. Cells, 2020, 9, 356.	4.1	16
32	From the pathophysiology of the human lung alveolus to epigenetic editing: Congress 2018 highlights from ERS Assembly 3 "Basic and Translational Science.†ERJ Open Research, 2019, 5, 00194-2018.	2.6	3
33	Effect of long-term corticosteroid treatment on microRNA and gene-expression profiles in COPD. European Respiratory Journal, 2019, 53, 1801202.	6.7	29
34	Gene network approach reveals co-expression patterns in nasal and bronchial epithelium. Scientific Reports, 2019, 9, 15835.	3.3	14
35	Dynamic Reciprocity: The Role of the Extracellular Matrix Microenvironment in Amplifying and Sustaining Pathological Lung Fibrosis. Molecular and Translational Medicine, 2019, , 239-270.	0.4	1
36	Pro-inflammatory effects of extracellular Hsp70 and cigarette smoke in primary airway epithelial cells from COPD patients. Biochimie, 2019, 156, 47-58.	2.6	24

#	Article	IF	Citations
37	<scp>SIRT</scp> 1/FoxO3 axis alteration leads to aberrant immune responses in bronchial epithelial cells. Journal of Cellular and Molecular Medicine, 2018, 22, 2272-2282.	3.6	42
38	Mesenchymal Stromal Cells to Regenerate Emphysema: On the Horizon?. Respiration, 2018, 96, 148-158.	2.6	28
39	Nasal epithelium as a proxy for bronchial epithelium for smoking-induced gene expression and expression Quantitative Trait Loci. Journal of Allergy and Clinical Immunology, 2018, 142, 314-317.e15.	2.9	32
40	Airway Epithelial Barrier Dysfunction in Chronic Obstructive Pulmonary Disease: Role of Cigarette Smoke Exposure. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 157-169.	2.9	217
41	Retinoic acid signaling balances adult distal lung epithelial progenitor cell growth and differentiation. EBioMedicine, 2018, 36, 461-474.	6.1	64
42	Profiling of healthy and asthmatic airway smooth muscle cells following interleukin- $1\hat{l}^2$ treatment: a novel role for CCL20 in chronic mucus hypersecretion. European Respiratory Journal, 2018, 52, 1800310.	6.7	38
43	microRNA–mRNA regulatory networks underlying chronic mucus hypersecretion in COPD. European Respiratory Journal, 2018, 52, 1701556.	6.7	37
44	Cigarette smoke exposure decreases CFLAR expression in the bronchial epithelium, augmenting susceptibility for lung epithelial cell death and DAMP release. Scientific Reports, 2018, 8, 12426.	3.3	31
45	Genetic variance is associated with susceptibility for cigarette smoke-induced DAMP release in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L559-L580.	2.9	15
46	miR-146a-5p plays an essential role in the aberrant epithelial–fibroblast cross-talk in COPD. European Respiratory Journal, 2017, 49, 1602538.	6.7	46
47	Targeted epigenetic editing of SPDEF reduces mucus production in lung epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L334-L347.	2.9	35
48	Increased neutrophil expression of pattern recognition receptors during <scp>COPD</scp> exacerbations. Respirology, 2017, 22, 401-404.	2.3	24
49	Distinct radiation responses after in vitro mtDNA depletion are potentially related to oxidative stress. PLoS ONE, 2017, 12, e0182508.	2.5	23
50	Nasal gene expression differentiates COPD from controls and overlaps bronchial gene expression. Respiratory Research, 2017, 18, 213.	3.6	33
51	Viral mimic poly-(I:C) attenuates airway epithelial T-cell suppressive capacity: implications for asthma. European Respiratory Journal, 2016, 48, 1785-1788.	6.7	11
52	Susceptibility for cigarette smoke-induced DAMP release and DAMP-induced inflammation in COPD. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L881-L892.	2.9	58
53	Cigarette smoke-induced epithelial expression of WNT-5B: implications for COPD. European Respiratory Journal, 2016, 48, 504-515.	6.7	49
54	Interleukin- $1\hat{l}_{\pm}$ drives the dysfunctional cross-talk of the airway epithelium and lung fibroblasts in COPD. European Respiratory Journal, 2016, 48, 359-369.	6.7	56

#	Article	IF	CITATIONS
55	A pro-inflammatory role for the Frizzled-8 receptor in chronic bronchitis. Thorax, 2016, 71, 312-322.	5.6	21
56	TGFâ€Î²â€induced profibrotic signaling is regulated in part by the WNT receptor Frizzledâ€8. FASEB Journal, 2016, 30, 1823-1835.	0.5	56
57	Cigarette smoke-induced necroptosis and DAMP release trigger neutrophilic airway inflammation in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L377-L386.	2.9	130
58	Protocadherin-1 Localization and Cell-Adhesion Function in Airway Epithelial Cells in Asthma. PLoS ONE, 2016, 11, e0163967.	2.5	16
59	Glycogen synthase kinase- $3\hat{l}^2$ modulation of glucocorticoid responsiveness in COPD. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1112-L1123.	2.9	21
60	Metalloproteinase Profiling in Lung Transplant Recipients With Good Outcome and Bronchiolitis Obliterans Syndrome. Transplantation, 2015, 99, 1946-1952.	1.0	15
61	A-kinase-anchoring proteins coordinate inflammatory responses to cigarette smoke in airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L766-L775.	2.9	23
62	Genetic variation associates with susceptibility for cigarette smoke-induced neutrophilia in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L693-L709.	2.9	14
63	MicroPET Evaluation of a Hydroxamate-Based MMP Inhibitor, [18F]FB-ML5, in a Mouse Model of Cigarette Smoke-Induced Acute Airway Inflammation. Molecular Imaging and Biology, 2015, 17, 680-687.	2.6	5
64	Increased serum levels of LL37, HMGB1 and S100A9 during exacerbation in COPD patients. European Respiratory Journal, 2015, 45, 1482-1485.	6.7	49
65	Unravelling the complexity of COPD by microRNAs: it's a small world after all. European Respiratory Journal, 2015, 46, 807-818.	6.7	73
66	A specific DAMP profile identifies susceptibility to smoke-induced airway inflammation. European Respiratory Journal, 2014, 43, 1183-1186.	6.7	17
67	Airway gene expression in COPD is dynamic with inhaled corticosteroid treatment and reflects biological pathways associated with disease activity. Thorax, 2014, 69, 14-23.	5.6	65
68	Oxidant-induced corticosteroid unresponsiveness in human bronchial epithelial cells. Thorax, 2014, 69, 5-13.	5.6	55
69	Pathological changes in the COPD lung mesenchyme – Novel lessons learned from inÂvitro and inÂvivo studies. Pulmonary Pharmacology and Therapeutics, 2014, 29, 121-128.	2.6	30
70	A-kinase anchoring proteins contribute to loss of E-cadherin and bronchial epithelial barrier by cigarette smoke. American Journal of Physiology - Cell Physiology, 2014, 306, C585-C597.	4.6	47
71	Glucocorticoids induce the production of the chemoattractant CCL20 in airway epithelium. European Respiratory Journal, 2014, 44, 361-370.	6.7	26
72	Abnormalities in Airway Epithelial Junction Formation in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1439-1442.	5.6	77

#	Article	IF	CITATIONS
73	Protease-Activated Receptor-2 Activation Contributes to House Dust Mite-Induced IgE Responses in Mice. PLoS ONE, 2014, 9, e91206.	2.5	35
74	Caveolin-1 Controls Airway Epithelial Barrier Function. Implications for Asthma. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 662-671.	2.9	72
75	Role of aberrant WNT signalling in the airway epithelial response to cigarette smoke in chronic obstructive pulmonary disease. Thorax, 2013, 68, 709-716.	5.6	82
76	Are salmeterol's beneficial effects on corticosteroid action in the airways executed at the epithelial barrier?. Respirology, 2013, 18, 1165-1166.	2.3	1
77	Aâ€kinase anchoring proteins (AKAPs) regulate airway smooth muscle secretory function. FASEB Journal, 2013, 27, 882.5.	0.5	0
78	Role for Aâ€kinase anchoring proteins in cigarette smokeâ€induced barrier dysfunction. FASEB Journal, 2013, 27, 1107.6.	0.5	0
79	Beyond the Immune System: The Role of Resident Cells in Asthma and COPD. Journal of Allergy, 2012, 2012, 1-3.	0.7	1
80	E-cadherin: gatekeeper of airway mucosa and allergic sensitization. Trends in Immunology, 2011, 32, 248-255.	6.8	172
81	Role of aberrant metalloproteinase activity in the pro-inflammatory phenotype of bronchial epithelium in COPD. Respiratory Research, 2011, 12, 110.	3.6	16
82	House Dust Mite–Promoted Epithelial-to-Mesenchymal Transition in Human Bronchial Epithelium. American Journal of Respiratory Cell and Molecular Biology, 2010, 42, 69-79.	2.9	134
83	Effect of Ciclesonide Treatment on Allergen-Induced Changes in T Cell Regulation in Asthma. International Archives of Allergy and Immunology, 2008, 145, 111-121.	2.1	11
84	Down-Regulation of E-Cadherin in Human Bronchial Epithelial Cells Leads to Epidermal Growth Factor Receptor-Dependent Th2 Cell-Promoting Activity. Journal of Immunology, 2007, 178, 7678-7685.	0.8	149
85	Der p, IL-4, and TGF-Î ² Cooperatively Induce EGFR-Dependent TARC Expression in Airway Epithelium. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 351-359.	2.9	62
86	Exposure to TARC alters \hat{I}^22 -adrenergic receptor signaling in human peripheral blood T lymphocytes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L53-L59.	2.9	22
87	Targeting T cells for asthma. Current Opinion in Pharmacology, 2005, 5, 227-231.	3.5	20