Elå¼bieta PÄ**k**åla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2998665/publications.pdf

Version: 2024-02-01

100 papers 1,774 citations

304701 22 h-index 35 g-index

103 all docs

103
docs citations

103 times ranked

2399 citing authors

#	Article	IF	CITATIONS
1	Evaluation of Two Novel Hydantoin Derivatives Using Reconstructed Human Skin Model EpiskinTM: Perspectives for Application as Potential Sunscreen Agents. Molecules, 2022, 27, 1850.	3.8	2
2	Pan-Phosphodiesterase Inhibitors Attenuate TGF- \hat{l}^2 -Induced Pro-Fibrotic Phenotype in Alveolar Epithelial Type II Cells by Downregulating Smad-2 Phosphorylation. Pharmaceuticals, 2022, 15, 423.	3.8	4
3	Anticancer half-sandwich Ir(<scp>iii</scp>) complex and its interaction with various biomolecules and their mixtures – a case study with ascorbic acid. Inorganic Chemistry Frontiers, 2022, 9, 3758-3770.	6.0	11
4	Cinnamamide derivatives with 4-hydroxypiperidine moiety enhance effect of doxorubicin to cancer cells and protect cardiomyocytes against drug-induced toxicity through CBR1 inhibition mechanism. Life Sciences, 2022, 305, 120777.	4.3	3
5	Autophagy modulating agents as chemosensitizers for cisplatin therapy in cancer. Investigational New Drugs, 2021, 39, 538-563.	2.6	36
6	Imidazopyridine-Based 5-HT ₆ Receptor Neutral Antagonists: Impact of <i>N</i> ¹ -Benzyl and <i>N</i> ¹ -Phenylsulfonyl Fragments on Different Receptor Conformational States. Journal of Medicinal Chemistry, 2021, 64, 1180-1196.	6.4	14
7	Design, Synthesis and Biological Activity of New Amides Derived from 3â€Benzhydryl and 3â€sec â€Butylâ€2,5â€dioxoâ€pyrrolidinâ€1â€ylâ€acetic Acid. ChemMedChem, 2021, 16, 1619-1630.	3.2	4
8	Synthesis, Anticonvulsant, and Antinociceptive Activity of New 3-(2-Chlorophenyl)- and 3-(3-Chlorophenyl)-2,5-dioxo-pyrrolidin-1-yl-acetamides. Molecules, 2021, 26, 1564.	3.8	10
9	The role of oxidative stress in the etiology of selected civilization diseases. Farmacja Polska, 2021, 77, 111-120.	0.1	O
10	Dinuclear half-sandwich Ir(III) complexes containing 4,4′-methylenedianiline-based ligands: Synthesis, characterization, cytotoxicity. Journal of Organometallic Chemistry, 2021, 938, 121748.	1.8	2
11	Carbonyl reduction pathway in hepatic in vitro metabolism of anthracyclines: Impact of structure on biotransformation rate. Toxicology Letters, 2021, 342, 50-57.	0.8	4
12	Cinnamic Acid Derivatives as Cardioprotective Agents against Oxidative and Structural Damage Induced by Doxorubicin. International Journal of Molecular Sciences, 2021, 22, 6217.	4.1	13
13	(+)-Usnic Acid as a Promising Candidate for a Safe and Stable Topical Photoprotective Agent. Molecules, 2021, 26, 5224.	3.8	9
14	Photodegradation of Bexarotene and Its Implication for Cytotoxicity. Pharmaceutics, 2021, 13, 1220.	4.5	2
15	A Comparative Survey of Anti-Melanoma and Anti-Inflammatory Potential of Usnic Acid Enantiomers—A Comprehensive In Vitro Approach. Pharmaceuticals, 2021, 14, 945.	3.8	11
16	Multidirectional anti-melanoma effect of galactolipids (MGDG-1 and DGDG-1) from Impatiens parviflora DC. and their synergy with doxorubicin. Toxicology in Vitro, 2021, 76, 105231.	2.4	4
17	Neuropathic pain-alleviating activity of novel 5-HT6 receptor inverse agonists derived from 2-aryl-1H-pyrrole-3-carboxamide. Bioorganic Chemistry, 2021, 115, 105218.	4.1	4
18	Trans-cinnamaldehyde: biological properties and applications in cosmetology. Farmacja Polska, 2021, 76, 619-627.	0.1	O

#	Article	IF	CITATIONS
19	The Involvement of Xanthone and (E)-Cinnamoyl Chromophores for the Design and Synthesis of Novel Sunscreening Agents. International Journal of Molecular Sciences, 2021, 22, 34.	4.1	6
20	Synthesis and in vitro evaluation of anti-inflammatory, antioxidant, and anti-fibrotic effects of new 8-aminopurine-2,6-dione-based phosphodiesterase inhibitors as promising anti-asthmatic agents. Bioorganic Chemistry, 2021, 117, 105409.	4.1	11
21	Analgesic and antiallodynic activity of novel anticonvulsant agents derived from 3-benzhydryl-pyrrolidine-2,5-dione in mouse models of nociceptive and neuropathic pain. European Journal of Pharmacology, 2020, 869, 172890.	3.5	4
22	A dual-acting 5-HT6 receptor inverse agonist/MAO-B inhibitor displays glioprotective and pro-cognitive properties. European Journal of Medicinal Chemistry, 2020, 208, 112765.	5.5	15
23	Medicinal potential of mycelium and fruiting bodies of an arboreal mushroom Fomitopsis officinalis in therapy of lifestyle diseases. Scientific Reports, 2020, 10, 20081.	3.3	17
24	Cinnamic acid derivatives as chemosensitising agents against DOX-treated lung cancer cells – Involvement of carbonyl reductase 1. European Journal of Pharmaceutical Sciences, 2020, 154, 105511.	4.0	14
25	Impact of N-Alkylamino Substituents on Serotonin Receptor (5-HTR) Affinity and Phosphodiesterase 10A (PDE10A) Inhibition of Isoindole-1,3-dione Derivatives. Molecules, 2020, 25, 3868.	3.8	6
26	A Novel, Pan-PDE Inhibitor Exerts Anti-Fibrotic Effects in Human Lung Fibroblasts via Inhibition of TGF- \hat{l}^2 Signaling and Activation of cAMP/PKA Signaling. International Journal of Molecular Sciences, 2020, 21, 4008.	4.1	28
27	Anticonvulsant and analgesic in neuropathic pain activity in a group of new aminoalkanol derivatives. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127325.	2.2	4
28	S(+)-(2E)-N-(2-Hydroxypropyl)-3-Phenylprop-2-Enamide (KM-568): A Novel Cinnamamide Derivative with Anticonvulsant Activity in Animal Models of Seizures and Epilepsy. International Journal of Molecular Sciences, 2020, 21, 4372.	4.1	3
29	The evolution of biologics in the context of oncological therapy. Oncology in Clinical Practice, 2020, 16, 14-21.	0.1	0
30	Similar Safety Profile of the Enantiomeric N-Aminoalkyl Derivatives of Trans-2-Aminocyclohexan-1-ol Demonstrating Anticonvulsant Activity. Molecules, 2019, 24, 2505.	3.8	1
31	Discovery of Novel UV-Filters with Favorable Safety Profiles in the 5-Arylideneimidazolidine-2,4-dione Derivatives Group. Molecules, 2019, 24, 2321.	3.8	8
32	Saponins as chemosensitizing substances that improve effectiveness and selectivity of anticancer drug—Minireview of in vitro studies. Phytotherapy Research, 2019, 33, 2141-2151.	5.8	19
33	Novel multitarget 5-arylidenehydantoins with arylpiperazinealkyl fragment: Pharmacological evaluation and investigation of cytotoxicity and metabolic stability. Bioorganic and Medicinal Chemistry, 2019, 27, 4163-4173.	3.0	8
34	Synthesis of N â€(phenoxyalkyl)â€, N â€{2â€{2â€(phenoxy)ethoxy]ethyl}―or N â€(phenoxyacetyl)piperazine Derivatives and Their Activity Within the Central Nervous System. ChemistrySelect, 2019, 4, 9381-9391.	1.5	4
35	Microbial biotransformation of some novel hydantoin derivatives: Perspectives for bioremediation of potential sunscreen agents. Chemosphere, 2019, 234, 108-115.	8.2	5
36	Dual 5-HT ₆ and D ₃ Receptor Antagonists in a Group of 1 <i>H</i> -Pyrrolo[3,2- <i>c</i>]quinolines with Neuroprotective and Procognitive Activity. ACS Chemical Neuroscience, 2019, 10, 3183-3196.	3.5	24

#	Article	IF	CITATIONS
37	Novel phosphodiesterases inhibitors from the group of purine-2,6-dione derivatives as potent modulators of airway smooth muscle cell remodelling. European Journal of Pharmacology, 2019, 865, 172779.	3.5	13
38	Synthesis, in Silico and in Vitro Study on Phase I Metabolism of the Potent 5-Ht7/5-Ht1a/D2 Receptor Ligand: 4-Fluoron -(1-{2-[2-(Methylsulfanyl)- Phenoxy]Ethyl}Pyrrolidin-3-Yl) Benzene Sulfonamide. Pharmaceutical Chemistry Journal, 2019, 53, 713-719.	0.8	1
39	Photostability of Terbinafine Under UVA Irradiation: The Effect of UV Absorbers. Photochemistry and Photobiology, 2019, 95, 911-923.	2.5	6
40	Synergistic anticancer activity of doxorubicin and piperlongumine on DU-145 prostate cancer cells – The involvement of carbonyl reductase 1 inhibition. Chemico-Biological Interactions, 2019, 300, 40-48.	4.0	30
41	Metabolic stability and its role in the discovery of new chemical entities. Acta Pharmaceutica, 2019, 69, 345-361.	2.0	60
42	Biotransformation of 4â€fluoroâ€ <i>N</i> à€{1â€{2â€{(propanâ€2â€yl)phenoxy]ethyl}â€8â€azabicyclo[3.2.1]octanâ€3â€yl)â€benzer novel potent 5â€HT ₇ receptor antagonist with antidepressantâ€like and anxiolytic properties: In vitro and in silico approach. Journal of Biochemical and Molecular Toxicology, 2018, 32, e22048.	nesulfona 3.0	mide, a
43	Anti-Helicobacter pylori activities of selected N-substituted cinnamamide derivatives evaluated on reference and clinical bacterial strains. Journal of Antibiotics, 2018, 71, 543-548.	2.0	7
44	Antiallodynic and antihyperalgesic activity of new 3,3-diphenyl-propionamides with anticonvulsant activity in models of pain in mice. European Journal of Pharmacology, 2018, 821, 39-48.	3.5	13
45	In Vitro Biotransformation, Safety, and Chemopreventive Action of Novel 8-Methoxy-Purine-2,6-Dione Derivatives. Applied Biochemistry and Biotechnology, 2018, 184, 124-139.	2.9	10
46	Novel non-sulfonamide 5-HT 6 receptor partial inverse agonist in a group of imidazo [4,5-b] pyridines with cognition enhancing properties. European Journal of Medicinal Chemistry, 2018, 144, 716-729.	5.5	37
47	Synthesis and anticonvulsant activity of phenoxyacetyl derivatives of amines, including aminoalkanols and amino acids. MedChemComm, 2018, 9, 1933-1948.	3.4	8
48	Synthesis and Pharmacological Evaluation of Novel Silodosin-Based Arylsulfonamide Derivatives as $\hat{l}\pm 1$ A/ $\hat{l}\pm 1$ D-Adrenergic Receptor Antagonist with Potential Uroselective Profile. Molecules, 2018, 23, 2175.	3.8	2
49	Piperlongumine (piplartine) as a lead compound for anticancer agents – Synthesis and properties of analogues: A mini-review. European Journal of Medicinal Chemistry, 2018, 156, 13-20.	5.5	88
50	Usnic acid reactive metabolites formation in human, rat, and mice microsomes. Implication for hepatotoxicity. Food and Chemical Toxicology, 2018, 120, 112-118.	3.6	16
51	Synthesis and activity of di- or trisubstituted N -(phenoxyalkyl)- or N -{2-[2-(phenoxy)ethoxy]ethyl}piperazine derivatives on the central nervous system. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2039-2049.	2.2	7
52	Fibroblast-to-myofibroblast transition in bronchial asthma. Cellular and Molecular Life Sciences, 2018, 75, 3943-3961.	5.4	95
53	Cinnamic acid derivatives in cosmetics: current use and future prospects. International Journal of Cosmetic Science, 2018, 40, 356-366.	2.6	91
54	Analgesic, antiallodynic, and anticonvulsant activity of novel hybrid molecules derived from N-benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide and 2-(2,5-dioxopyrrolidin-1-yl)butanamide in animal models of pain and epilepsy. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 567-579.	3.0	15

#	Article	IF	Citations
55	3-Aminomethyl Derivatives of 2-Phenylimidazo[1,2- <i>a</i>]-pyridine as Positive Allosteric Modulators of GABA _A Receptor with Potential Antipsychotic Activity. ACS Chemical Neuroscience, 2017, 8, 1291-1298.	3.5	15
56	Effect of some newly synthesized xanthone and piperazine derivatives with cardiovascular activity on rheology of human erythrocytes in vitro. Clinical Hemorheology and Microcirculation, 2017, 67, 1-14.	1.7	0
57	Metabolic carbonyl reduction of anthracyclines â€" role in cardiotoxicity and cancer resistance. Reducing enzymes as putative targets for novel cardioprotective and chemosensitizing agents. Investigational New Drugs, 2017, 35, 375-385.	2.6	46
58	Design, synthesis and anticonvulsant-analgesic activity of new N-[(phenoxy)alkyl]- and N-[(phenoxy)ethoxyethyl]aminoalkanols. MedChemComm, 2017, 8, 220-238.	3.4	10
59	Synthesis and Determination of Lipophilicity, Anticonvulsant Activity, and Preliminary Safety of 3â€6ubstituted and 3â€Unsubstituted <i>N</i> â€{(4â€Arylpiperazinâ€1â€yl)alkyl]pyrrolidineâ€2,5â€dione Deriva ChemMedChem, 2017, 12, 1848-1856.	atives.	7
60	The impact of ZnO and TiO2 on the stability of clotrimazole under UVA irradiation: Identification of photocatalytic degradation products and in vitro cytotoxicity assessment. Journal of Pharmaceutical and Biomedical Analysis, 2017, 145, 283-292.	2.8	12
61	Structure-anticonvulsant activity studies in the group of (E)-N-cinnamoyl aminoalkanols derivatives monosubstituted in phenyl ring with 4-Cl, 4-CH3 or 2-CH3. Bioorganic and Medicinal Chemistry, 2017, 25, 471-482.	3.0	19
62	Design, synthesis, and anticonvulsant activity of some derivatives of xanthone with aminoalkanol moieties. Chemical Biology and Drug Design, 2017, 89, 339-352.	3.2	21
63	Two new triterpenoid saponins from the leaves of Impatiens parviflora DC. and their cytotoxic activity. Industrial Crops and Products, 2017, 96, 71-79.	5.2	22
64	Chemopreventive and Anticancer Activities of Bacopa Monnieri Extracted from Artificial Digestive Juices. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	4
65	Pentoxifylline and its active metabolite lisofylline attenuate transforming growth factor \hat{l}^21 -induced asthmatic bronchial fibroblast-to-myofibroblast transition. Acta Biochimica Polonica, 2016, 63, 437-42.	0.5	9
66	Preliminary Safety Assessment of New Azinesulfonamide Analogs of Aripiprazole using Prokaryotic Models. Advanced Pharmaceutical Bulletin, 2016, 6, 377-384.	1.4	2
67	Preliminary mutagenicity and genotoxicity evaluation of selected arylsulfonamide derivatives of (aryloxy)alkylamines with potential psychotropic properties. Journal of Applied Genetics, 2016, 57, 263-270.	1.9	3
68	Design, synthesis, and biological evaluation of fluorinated imidazo[1,2- a]pyridine derivatives with potential antipsychotic activity. European Journal of Medicinal Chemistry, 2016, 124, 456-467.	5.5	27
69	Synergistic Cytotoxic and Anti-invasive Effects of Mitoxantrone and Triterpene Saponins from Lysimachia ciliata on Human Prostate Cancer Cells. Planta Medica, 2016, 82, 1546-1552.	1.3	12
70	In vitro mutagenic, antimutagenic, and antioxidant activities evaluation and biotransformation of some bioactive 4â€substituted 1â€(2â€methoxyphenyl)piperazine derivatives. Journal of Biochemical and Molecular Toxicology, 2016, 30, 593-601.	3.0	20
71	Synthesis and biological evaluation of 2-fluoro and 3-trifluoromethyl-phenyl-piperazinylalkyl derivatives of $1 < i > H < i > -i midazo[2,1-< i>f < i >] purine-2,4(3 < i>H < i >,8 < i>H < i >)-dione as potential antidepressant agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 10-24.$	5.2	21
72	Anticonvulsant activity, crystal structures, and preliminary safety evaluation of N-trans-cinnamoyl derivatives of selected (un)modified aminoalkanols. European Journal of Medicinal Chemistry, 2016, 107, 26-37.	5.5	16

#	Article	IF	CITATIONS
73	Evaluation of anticonvulsant and antinociceptive properties of new N-Mannich bases derived from pyrrolidine-2,5-dione and 3-methylpyrrolidine-2,5-dione. Naunyn-Schmiedeberg's Archives of Pharmacology, 2016, 389, 339-348.	3.0	20
74	N-Alkylated arylsulfonamides of (aryloxy)ethyl piperidines: 5-HT7 receptor selectivity versus multireceptor profile. Bioorganic and Medicinal Chemistry, 2016, 24, 130-139.	3.0	16
75	Cunninghamella Biotransformation - Similarities to Human Drug Metabolism and Its Relevance for the Drug Discovery Process. Current Drug Metabolism, 2016, 17, 107-117.	1.2	30
76	Synthesis, Anticonvulsant Activity and Metabolism of 4â€chlorâ€3â€methylphenoxyethylamine Derivatives of <i>Trans</i> \$\frac{1}{2}\text{\$\frac{1}{2}}\text{\$\frac{1}{	2.6	8
77	New Arylpiperazinylalkyl Derivatives of 8â€Alkoxyâ€purineâ€2,6â€dione and Dihydro[1,3]oxazolo[2,3â€ <i>f</i> purinedione Targeting the Serotonin 5â€HT _{1A} /5â€HT _{2A} /5â€HT ₇ and Dopamine D ₂ Receptors. Arc Der Pharmazie. 2015. 348. 242-253.	hiv ¹	6
78	Design, synthesis and biological activity of new amides derived from 3-methyl-3-phenyl-2,5-dioxo-pyrrolidin-1-yl-acetic acid. European Journal of Medicinal Chemistry, 2015, 102, 14-25.	5.5	33
79	Simultaneous LC/ESIâ€MS Separation Method for the Enantioseparation of Some New Anticonvulsant Drugs. Chirality, 2014, 26, 144-149.	2.6	O
80	Antimutagenic compounds and their possible mechanisms of action. Journal of Applied Genetics, 2014, 55, 273-285.	1.9	144
81	Evaluation of mutagenic and antimutagenic properties of new derivatives of pyrrolidine-2,5-dione with anti-epileptic activity, by use of the Vibrio harveyi mutagenicity test. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2013, 758, 18-22.	1.7	16
82	Synthesis and biological properties of new N-Mannich bases derived from 3-methyl-3-phenyl- and 3,3-dimethyl-succinimides. Part V. European Journal of Medicinal Chemistry, 2013, 66, 12-21.	5.5	28
83	Search for new tools to combat Gram-negative resistant bacteria among amine derivatives of 5-arylidenehydantoin. Bioorganic and Medicinal Chemistry, 2013, 21, 135-145.	3.0	29
84	RNAi in Clinical Studies. Current Medicinal Chemistry, 2013, 20, 1801-1816.	2.4	56
85	In vitro effect of pentoxifylline and lisofylline on deformability and aggregation of red blood cells from healthy subjects and patients with chronic venous disease Acta Biochimica Polonica, 2013, 60, .	0.5	15
86	Cunninghamella as a Microbiological Model for Metabolism of Histamine H3 Receptor Antagonist 1-[3-(4-tert-Butylphenoxy)propyl]piperidine. Applied Biochemistry and Biotechnology, 2012, 168, 1584-1593.	2.9	13
87	Synthesis and anticonvulsant activity of trans- and cis-2-(2,6-dimethylphenoxy)-N-(2- or) Tj ETQq1 1 0.784314 rgB 6927-6934.	T /Overloc 3.0	ck 10 Tf 50 18
88	The study of the lipophilicity of some aminoalkanol derivatives with anticonvulsant activity. Biomedical Chromatography, 2010, 24, 1365-1372.	1.7	7
89	Alcohol Dehydrogenases as Tools for the Preparation of Enantiopure Metabolites of Drugs with Methyl Alkyl Ketone Moiety. Scientia Pharmaceutica, 2009, 77, 9-17.	2.0	6
90	The Influence of some Xanthone Derivatives on the Activity of J-774A.1 Cells. Scientia Pharmaceutica, 2009, 77, .	2.0	3

#	Article	IF	CITATION
91	Estimating the lipophilicity of a number of 2â€aminoâ€1â€cyclohexanol derivatives exhibiting anticonvulsant activity. Biomedical Chromatography, 2009, 23, 543-550.	1.7	14
92	Anticonvulsant activity of some xanthone derivatives. Bioorganic and Medicinal Chemistry, 2008, 16, 7234-7244.	3.0	34
93	Enantioselective reduction of pentoxifylline to lisofylline using whole-cell Lactobacillus kefiri biotransformation. Biotechnology Journal, 2007, 2, 492-496.	3.5	15
94	Synthesis and biological activity of tricyclic aryloimidazo-, pyrimido-, and diazepinopurinediones. Bioorganic and Medicinal Chemistry, 2006, 14, 7258-7281.	3.0	36
95	Synthesis, structure–activity relationship of some new anti-arrhythmic 5-arylidene imidazolidine-2,4-dione derivatives. European Journal of Medicinal Chemistry, 2005, 40, 259-269.	5.5	16
96	Tricyclic oxazolo[2,3-f]purinediones: potency as adenosine receptor ligands and anticonvulsants. Bioorganic and Medicinal Chemistry, 2004, 12, 4895-4908.	3.0	23
97	lmidazo[2,1-b]thiazepines: synthesis, structure and evaluation of benzodiazepine receptor binding. European Journal of Medicinal Chemistry, 2004, 39, 205-218.	5.5	19
98	Impact of the aryl substituent kind and distance from pyrimido [2,1-f] purindiones on the adenosine receptor selectivity and antagonistic properties. European Journal of Medicinal Chemistry, 2003, 38, 397-402.	5 . 5	26
99	Synthesis, structure and antiarrhythmic properties evaluation of new basic derivatives of 5,5-diphenylhydantoin. European Journal of Medicinal Chemistry, 2003, 38, 555-566.	5.5	23
100	Imidazo-thiazine, -diazinone and -diazepinone derivatives. Synthesis, structure and benzodiazepine receptor binding. European Journal of Medicinal Chemistry, 2001, 36, 407-419.	5 . 5	38