
Giuseppe Cappelletti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2998602/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photocatalytic removal of gaseous ethanol, acetaldehyde and acetic acid: from a fundamental approach to real cases. International Materials Reviews, 2022, 67, 864-897.	9.4	8
2	Smart interfaces in Li-ion batteries: Near-future key challenges. Electrochimica Acta, 2022, 415, 140258.	2.6	8
3	Emulsifying properties of sugar-based surfactants prepared by chemoenzymatic synthesis. Colloids and Interface Science Communications, 2022, 48, 100630.	2.0	7
4	Tuning the Cu/SiO2 wettability features for bio-derived platform molecules valorization. Molecular Catalysis, 2022, 528, 112462.	1.0	1
5	A comprehensive study on the effect of bentonite fining on wine charged model molecules. Food Chemistry, 2021, 338, 127840.	4.2	5
6	Unveiling the acetone sensing mechanism by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow><ml:mi mathvariant="normal">WO</ml:mi </mml:mrow><mml:mn>3</mml:mn></mml:msub> chemiresistors through a joint theory-experiment approach. Electrochimica Acta, 2021, 371, 137611.</mml:math 	2.6	21
7	Enhanced Historical Limestone Protection by New Organic/Inorganic Additive-Modified Resins. Coatings, 2021, 11, 73.	1.2	7
8	Direct measurement and modeling of spontaneous charge migration across anatase–brookite nanoheterojunctions. Journal of Materials Chemistry A, 2021, 9, 7782-7790.	5.2	14
9	Design of New Polyacrylate Microcapsules to Modify the Water-Soluble Active Substances Release. Polymers, 2021, 13, 809.	2.0	6
10	Stable Coloured Micrometric Films from Highly Concentrated Nano-Silver Sols: The Role of the Stabilizing Agents. Nanomaterials, 2021, 11, 980.	1.9	1
11	Disclosing the Sensitivity and Selectivity of Metal Oxide/Graphene Oxide-Based Chemoresistors towards VOCs. Engineering Proceedings, 2021, 6, .	0.4	1
12	Chemical Images on Fingerprints Revealed with Mass Spectrometry. Applied Sciences (Switzerland), 2021, 11, 5624.	1.3	1
13	Calcitic-based stones protection by a low-fluorine modified methacrylic coating. Environmental Science and Pollution Research, 2021, , 1.	2.7	2
14	Towards Low Temperature VOCs Chemoresistors: Graphene Oxide Versus Porphyrin-Based Materials. Chemistry Proceedings, 2021, 5, .	0.1	1
15	ORR in Non-Aqueous Solvent for Li-Air Batteries: The Influence of Doped MnO2-Nanoelectrocatalyst. Nanomaterials, 2020, 10, 1735.	1.9	6
16	Breakthroughs in the Design of Novel Carbon-Based Metal Oxides Nanocomposites for VOCs Gas Sensing. Nanomaterials, 2020, 10, 1485.	1.9	44
17	Engineering of SnO ₂ –Graphene Oxide Nanoheterojunctions for Selective Room-Temperature Chemical Sensing and Optoelectronic Devices. ACS Applied Materials & Interfaces, 2020, 12, 39549-39560.	4.0	72
18	Insight into the Release Agents/PVD Coatings Interaction for Plastic Mold Technology. Coatings, 2020, 10, 281.	1.2	7

#	Article	IF	CITATIONS
19	Exploring SnxTi1â^`xO2 Solid Solutions Grown onto Graphene Oxide (GO) as Selective Toluene Gas Sensors. Nanomaterials, 2020, 10, 761.	1.9	22
20	Towards Novel Fluorinated Methacrylic Coatings for Cultural Heritage: A Combined Polymers and Surfaces Chemistry Study. Polymers, 2019, 11, 1190.	2.0	16
21	The hydrophobicity modulation of glass and marble materials by different Si-based coatings. Progress in Organic Coatings, 2019, 136, 105260.	1.9	14
22	Stearyl methacrylate co-polymers: Towards new polymer coatings for mortars protection. Applied Surface Science, 2019, 488, 213-220.	3.1	18
23	Role of the growth step on the structural, optical and surface features of TiO ₂ /SnO ₂ composites. Royal Society Open Science, 2019, 6, 181662.	1.1	8
24	An electrochemical outlook upon the gaseous ethanol sensing by graphene oxide-SnO2 hybrid materials. Applied Surface Science, 2019, 483, 1081-1089.	3.1	25
25	Room-temperature photodetectors and VOC sensors based on graphene oxide–ZnO nano-heterojunctions. Nanoscale, 2019, 11, 22932-22945.	2.8	51
26	A detailed investigation of MnO2 nanorods to be grown onto activated carbon. High efficiency towards aqueous methyl orange adsorption/degradation. Applied Surface Science, 2019, 472, 118-126.	3.1	47
27	A novel optimized mold release oil-in-water emulsion for polyurethane foams production. Journal of Molecular Liquids, 2018, 261, 199-207.	2.3	13
28	Fluorinated Polyacrylic Resins for the Protection of Cultural Heritages: The Effect of Fluorine on Hydrophobic Properties and Photochemical Stability. Chemistry Letters, 2018, 47, 280-283.	0.7	14
29	Concurrent role of metal (Sn, Zn) and N species in enhancing the photocatalytic activity of TiO2 under solar light. Catalysis Today, 2018, 313, 40-46.	2.2	31
30	Ad hoc tailored electrocatalytic MnO2 nanorods for the oxygen reduction in aqueous and organic media. Journal of Electroanalytical Chemistry, 2018, 808, 439-445.	1.9	8
31	Protective features, durability and biodegration study of acrylic and methacrylic fluorinated polymer coatings for marble protection. Progress in Organic Coatings, 2018, 114, 47-57.	1.9	41
32	Nano-MnO2 Decoration of TiO2 Microparticles to Promote Gaseous Ethanol Visible Photoremoval. Nanomaterials, 2018, 8, 686.	1.9	22
33	The role played by different TiO2 features on the photocatalytic degradation of paracetamol. Applied Surface Science, 2017, 424, 198-205.	3.1	22
34	Zn- vs Bi-based oxides for o-toluidine photocatalytic treatment under solar light. Environmental Science and Pollution Research, 2017, 24, 8287-8296.	2.7	10
35	Emerging pollutant mixture mineralization by TiO2 photocatalysts. The role of the water medium. Photochemical and Photobiological Sciences, 2017, 16, 60-66.	1.6	55
36	Advanced mortar coatings for cultural heritage protection. Durability towards prolonged UV and outdoor exposure. Environmental Science and Pollution Research, 2017, 24, 12608-12617.	2.7	37

#	Article	IF	CITATIONS
37	Green and low cost tetracycline degradation processes by nanometric and immobilized TiO 2 systems. Catalysis Today, 2017, 281, 38-44.	2.2	63
38	Tailored routes for home-made Bi-doped ZnO nanoparticles. Photocatalytic performances towards o-toluidine, a toxic water pollutant. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332, 534-545.	2.0	26
39	A Nanostructured Matrices Assessment to Study Drug Distribution in Solid Tumor Tissues by Mass Spectrometry Imaging. Nanomaterials, 2017, 7, 71.	1.9	13
40	The Influence of Carbonaceous Matrices and Electrocatalytic MnO2 Nanopowders on Lithium-Air Battery Performances. Nanomaterials, 2016, 6, 10.	1.9	18
41	Photo-renewable electroanalytical sensor for neurotransmitters detection in body fluid mimics. Analytical and Bioanalytical Chemistry, 2016, 408, 7339-7349.	1.9	10
42	3D Mass Spectrometry Imaging Reveals a Very Heterogeneous Drug Distribution in Tumors. Scientific Reports, 2016, 6, 37027.	1.6	58
43	Insight into the role of amines in Metal Working Fluids. Corrosion Science, 2016, 110, 192-199.	3.0	16
44	High-performance of bare and Ti-doped α-MnO2 nanoparticles in catalyzing the Oxygen Reduction Reaction. Journal of Power Sources, 2016, 325, 116-128.	4.0	40
45	Hydrophobic and superhydrophobic coatings for limestone and marble conservation. , 2016, , 421-452.		16
46	Electrochemical sensors cleaned by light: a proof of concept for on site applications towards integrated monitoring systems. RSC Advances, 2015, 5, 71210-71214.	1.7	23
47	Hazardous o-toluidine mineralization by photocatalytic bismuth doped ZnO slurries. Chemical Communications, 2015, 51, 10459-10462.	2.2	31
48	Self-cleaning properties in engineered sensors for dopamine electroanalytical detection. Analyst, The, 2015, 140, 1486-1494.	1.7	36
49	Transparent Hybrid Films for Stone Conservation and Protection. Research for Development, 2015, , 423-429.	0.2	0
50	Alkylsilane–SiO ₂ Hybrids. A Concerted Picture of Temperature Effects in Vapor Phase Functionalization. Journal of Physical Chemistry C, 2015, 119, 15390-15400.	1.5	35
51	Impregnation versus Bulk Synthesis: How the Synthetic Route Affects the Photocatalytic Efficiency of Nb/Ta:N Codoped TiO ₂ Nanomaterials. Journal of Physical Chemistry C, 2015, 119, 24104-24115.	1.5	36
52	Easy Accommodation of Different Oxidation States in Iridium Oxide Nanoparticles with Different Hydration Degree as Water Oxidation Electrocatalysts. ACS Catalysis, 2015, 5, 5104-5115.	5.5	105
53	On the role of hydrophobic Si-based protective coatings in limiting mortar deterioration. Environmental Science and Pollution Research, 2015, 22, 17733-17743.	2.7	11
54	Photo-mineralization of noxious o-toluidine water pollutant by nano-ZnO: The role of the oxide surface texture on the kinetic path. Applied Catalysis B: Environmental, 2015, 178, 233-240.	10.8	12

#	Article	IF	CITATIONS
55	Smart hybrid coatings for natural stones conservation. Progress in Organic Coatings, 2015, 78, 511-516.	1.9	86
56	Second Generation Nitrogen Doped Titania Nanoparticles: A Comprehensive Electronic and Microstructural Picture. Chinese Journal of Chemistry, 2014, 32, 1195-1213.	2.6	20
57	Hydrophobizing coatings for cultural heritage. A detailed study of resin/stone surface interaction. Applied Physics A: Materials Science and Processing, 2014, 116, 341-348.	1.1	43
58	Engineered organic/inorganic hybrids for superhydrophobic coatings by wet and vapour procedures. Journal of Materials Science, 2014, 49, 2734-2744.	1.7	20
59	Role of the Nitrogen Source in Determining Structure and Morphology of N-Doped Nanocrystalline TiO2. Journal of Physical Chemistry C, 2014, 118, 4797-4807.	1.5	33
60	Unraveling the Cooperative Mechanism of Visible-Light Absorption in Bulk N,Nb Codoped TiO ₂ Powders of Nanomaterials. Journal of Physical Chemistry C, 2014, 118, 24152-24164.	1.5	47
61	Multi-Walled Carbon Nanotubes (MWCNTs) modified electrodes: Effect of purification and functionalization on the electroanalytical performances. Electrochimica Acta, 2014, 146, 403-410.	2.6	30
62	Photocatalytic remediation of indoor pollution by transparent TiO2 films. Catalysis Today, 2014, 230, 35-40.	2.2	53
63	Ultra-Traces Detection by Gold-Based Electrodes in As(III) Novel Photoremediation. Electrocatalysis, 2013, 4, 306-311.	1.5	2
64	Electrochemically assisted deposition of transparent, mechanically robust TiO2 films for advanced applications. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	27
65	Electrodeposited nano-titania films for photocatalytic Cr(VI) reduction. Catalysis Today, 2013, 209, 8-12.	2.2	19
66	Investigation and optimization of photocurrent transient measurements on nano-TiO2. Journal of Applied Electrochemistry, 2013, 43, 217-225.	1.5	37
67	Pressurized photo-reactor for the degradation of the scarcely biodegradable DPC cationic surfactant in water. Chemical Engineering Journal, 2013, 225, 416-422.	6.6	10
68	Structure and photoluminescence of TiO2 nanocrystals doped and co-doped with N and rare earths (Y3+, Pr3+). Journal of Alloys and Compounds, 2013, 561, 109-113.	2.8	23
69	Wettability of bare and fluorinated silanes: A combined approach based on surface free energy evaluations and dipole moment calculations. Journal of Colloid and Interface Science, 2013, 389, 284-291.	5.0	63
70	Effect of the Preparation Procedure on the Morphology of Thin TiO ₂ Films and Their Device Performance in Small-Molecule Bilayer Hybrid Solar Cells. ACS Applied Materials & Interfaces, 2012, 4, 5997-6004.	4.0	25
71	IrO ₂ -Based Disperse-Phase Electrocatalysts: A Complementary Study by Means of the Cavity-Microelectrode and Ex-Situ X-ray Absorption Spectroscopy. Journal of Physical Chemistry A, 2012, 116, 6497-6504.	1.1	29
72	Block copolymers for the synthesis of pure and Bi-promoted nano-TiO2 as active photocatalysts. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	18

#	Article	IF	CITATIONS
73	Time effects on the stability of the induced defects in TiO2 nanoparticles doped by different nitrogen sources. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	16
74	Designing materials by means of the cavity-microelectrode: the introduction of the quantitative rapid screening toward a highly efficient catalyst for water oxidation. Journal of Materials Chemistry, 2012, 22, 8896.	6.7	18
75	Role of Pr on the Semiconductor Properties of Nanotitania. An Experimental and First-Principles Investigation. Journal of Physical Chemistry C, 2012, 116, 23083-23093.	1.5	19
76	Multiscale Rough Titania Films with Patterned Hydrophobic/Oleophobic Features. Journal of Physical Chemistry C, 2012, 116, 26405-26413.	1.5	43
77	About the Nitrogen Location in Nanocrystalline N-Doped TiO ₂ : Combined DFT and EXAFS Approach. Journal of Physical Chemistry C, 2012, 116, 1764-1771.	1.5	74
78	Bisphenol A endocrine disruptor complete degradation using TiO2 photocatalysis with ozone. Environmental Chemistry Letters, 2012, 10, 55-60.	8.3	39
79	Tailored TiO2 layers for the photocatalytic ozonation of cumylphenol, a refractory pollutant exerting hormonal activity. Chemical Communications, 2011, 47, 2640.	2.2	26
80	Interplay between Chemistry and Texture in Hydrophobic TiO2 Hybrids. Journal of Physical Chemistry C, 2011, 115, 18649-18658.	1.5	33
81	Electronic Structure of Pure and N-Doped TiO ₂ Nanocrystals by Electrochemical Experiments and First Principles Calculations. Journal of Physical Chemistry C, 2011, 115, 6381-6391.	1.5	118
82	Photocatalytic removal of ethanol and acetaldehyde by N-promoted TiO2 films: The role of the different nitrogen sources. Catalysis Today, 2011, 161, 169-174.	2.2	43
83	Mesoporous Titania Nanocrystals by Hydrothermal Template Growth. Journal of Nanomaterials, 2011, 2011, 1-9.	1.5	4
84	Photocatalytic degradation of organic molecules in water: Photoactivity and reaction paths in relation to TiO2 particles features. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 211, 185-192.	2.0	52
85	Electrochemistry as a tool for nano-TiO2 deposition and for photoremediation pollutant monitoring. Electrochemistry Communications, 2010, 12, 1013-1016.	2.3	10
86	Solar photoactivity of nano-N-TiO2 from tertiary amine: role of defects and paramagnetic species. Applied Catalysis B: Environmental, 2010, 96, 314-322.	10.8	167
87	Phonon confinement effect in mixed Sn–Ir oxide nanocrystals. Chemical Physics Letters, 2010, 496, 109-112.	1.2	3
88	Nanostructured TiO ₂ modified by perfluoropolyethers: Gas phase photocatalytic activity. Journal of Materials Research, 2010, 25, 96-103.	1.2	5
89	Nanocrystalline WO ₃ Polymorphs. Surfactant Assisted Growth Steps to Tailor Microstructure and NO ₂ Response. Journal of Nanoscience and Nanotechnology, 2010, 10, 8367-8374.	0.9	6
90	Siloxaneâ^'TiO2 Hybrid Nanocomposites. The Structure of the Hydrophobic Layer. Journal of Physical Chemistry C, 2010, 114, 8287-8293.	1.5	60

#	Article	IF	CITATIONS
91	Photocatalysis for the Degradation of Ionic Surfactants in Water: The Case of DPC. Materials Research Society Symposia Proceedings, 2009, 1171, 71.	0.1	0
92	Amino acid synergetic effect on structure, morphology and surface properties of biomimetic apatite nanocrystals. Acta Biomaterialia, 2009, 5, 1241-1252.	4.1	118
93	Physico-chemical characterization of IrO2–SnO2 sol-gel nanopowders for electrochemical applications. Journal of Applied Electrochemistry, 2009, 39, 2093-2105.	1.5	27
94	Photodegradation of Pollutants in Air: Enhanced Properties of Nano-TiO2Prepared by Ultrasound. Nanoscale Research Letters, 2009, 4, 97-105.	3.1	85
95	N-doped TiO2 from TiCl3 for photodegradation of air pollutants. Catalysis Today, 2009, 144, 31-36.	2.2	56
96	Liquid phase reactions catalyzed by Fe- and Mn-sulphated ZrO2. Applied Catalysis A: General, 2009, 360, 137-144.	2.2	7
97	New electrocatalytic materials based on mixed metal oxides: electrochemical quartz crystal microbalance characterization. Journal of Applied Electrochemistry, 2008, 38, 973-978.	1.5	10
98	TiO2 nanocrystal particles and electrodes. The combined role of pH and metal substrate. Journal of Electroanalytical Chemistry, 2008, 621, 185-197.	1.9	9
99	Efficiency of 1,4-dichlorobenzene degradation in water under photolysis, photocatalysis on TiO2 and sonolysis. Journal of Hazardous Materials, 2008, 153, 1136-1141.	6.5	80
100	Nano-titania assisted photoreduction of Cr(VI). Applied Catalysis B: Environmental, 2008, 78, 193-201.	10.8	107
101	Nitrogen-Doped Titanium Dioxide Active in Photocatalytic Reactions with Visible Light: A Multi-Technique Characterization of Differently Prepared Materials. Journal of Physical Chemistry C, 2008, 112, 17244-17252.	1.5	155
102	Photocatalytic Degradation of Toluene in the Gas Phase: Relationship between Surface Species and Catalyst Features. Environmental Science & Technology, 2008, 42, 6671-6676.	4.6	98
103	Tailored Anatase/Brookite Nanocrystalline TiO ₂ . The Optimal Particle Features for Liquid- and Gas-Phase Photocatalytic Reactions. Journal of Physical Chemistry C, 2007, 111, 13222-13231.	1.5	150
104	Growth of TiO2 nanocrystals in the presence of alkylpyridinium salts: the interplay between hydrophobic and hydrophilic interactions. Surface and Interface Analysis, 2006, 38, 452-457.	0.8	9
105	XPS study of the surfactant film adsorbed onto growing titania nanoparticles. Applied Surface Science, 2006, 253, 519-524.	3.1	26
106	Composite ternary SnO2–IrO2–Ta2O5 oxide electrocatalysts. Journal of Electroanalytical Chemistry, 2006, 589, 160-166.	1.9	93
107	Bulk, Surface and Morphological Features of Nanostructured Tin Oxide by a Controlled Alkoxide-Gel Path. Journal of Nanoparticle Research, 2006, 8, 653-660.	0.8	13
108	The influence of iron content on the promotion of the zircon structure and the optical properties of pink coral pigments. Journal of the European Ceramic Society, 2005, 25, 911-917.	2.8	38

#	Article	IF	CITATIONS
109	Low-temperature sol–gel nanocrystalline tin oxide. Electrochimica Acta, 2005, 50, 4419-4425.	2.6	11
110	Aged Titania Nanoparticles:Â The Simultaneous Control of Local and Long-Range Properties. Journal of Physical Chemistry B, 2005, 109, 4448-4454.	1.2	24
111	Structural and Spectroscopic Investigations of Blue, Vanadium-Doped ZrSiO4Pigments Prepared by a Solâ^'Gel Route. Journal of Physical Chemistry B, 2005, 109, 22112-22119.	1.2	35
112	Liquid-phase catalytic activity of sulfated zirconia from sol–gel precursors: the role of the surface features. Journal of Catalysis, 2004, 227, 470-478.	3.1	53
113	Surface state of sulfated zirconia: the role of the sol–gel reaction parameters. Surface and Interface Analysis, 2004, 36, 745-748.	0.8	30
114	Yellow Pr-zircon pigments. Journal of the European Ceramic Society, 2004, 24, 3603-3611.	2.8	81
115	The role of surface electrification on the growth and structural features of titania nanoparticles. Physical Chemistry Chemical Physics, 2004, 6, 3535.	1.3	24
116	Electrodeposited Polycrystalline Silver Electrodes: Surface Control for Electrocatalysis Studies. Russian Journal of Electrochemistry, 2003, 39, 170-176.	0.3	16
117	The role of surface morphology on the electrocatalytic reduction of organic halides on mono- and polycrystalline silver. Electrochimica Acta, 2003, 48, 3789-3796.	2.6	45
118	Surface screening effects by specifically adsorbed halide anions in the electrocatalytic reduction of a model organic halide at mono- and polycrystalline silver in acetonitrile. Journal of Electroanalytical Chemistry, 2003, 552, 213-221.	1.9	33
119	Nanocrystalline titanium oxide by sol–gel method. The role of the solvent removal step. Physical Chemistry Chemical Physics, 2003, 5, 1689-1694.	1.3	32
120	Iron doped zirconium silicate prepared by a sol–gel procedure. The effect of the reaction conditions on the structure, morphology and optical properties of the powders. Physical Chemistry Chemical Physics, 2002, 4, 5683-5689.	1.3	18
121	Adsorption competition effects in the electrocatalytic reduction of organic halides on silver. Journal of Electroanalytical Chemistry, 2002, 532, 285-293.	1.9	42