Wei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2998552/publications.pdf Version: 2024-02-01

33 papers	1,403 citations	516215 16 h-index	500791 28 g-index
33	33	33	1584
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Superhydrophobic Coatings with Edible Materials. ACS Applied Materials & Interfaces, 2016, 8, 18664-18668.	4.0	172
2	Durable gels with ultra-low adhesion to ice. Journal of Materials Chemistry A, 2016, 4, 18253-18258.	5.2	158
3	Dropwise condensation on solid hydrophilic surfaces. Science Advances, 2020, 6, eaax0746.	4.7	143
4	Coalescence-induced jumping of droplets on superomniphobic surfaces with macrotexture. Science Advances, 2018, 4, eaau3488.	4.7	108
5	Trade-off in membrane distillation with monolithic omniphobic membranes. Nature Communications, 2019, 10, 3220.	5.8	106
6	Metamorphic Superomniphobic Surfaces. Advanced Materials, 2017, 29, 1700295.	11.1	104
7	An experimental study on soft PDMS materials for aircraft icing mitigation. Applied Surface Science, 2018, 447, 599-609.	3.1	69
8	Superhydrophobic-omniphobic membrane with anti-deformable pores for membrane distillation with excellent wetting resistance. Journal of Membrane Science, 2021, 620, 118768.	4.1	68
9	Hemocompatibility of Superhemophobic Titania Surfaces. Advanced Healthcare Materials, 2017, 6, 1600717.	3.9	65
10	Free-Standing, Flexible, Superomniphobic Films. ACS Applied Materials & Interfaces, 2016, 8, 21962-21967.	4.0	59
11	Elucidating the Trade-off between Membrane Wetting Resistance and Water Vapor Flux in Membrane Distillation. Environmental Science & Technology, 2020, 54, 10333-10341.	4.6	56
12	Fabrication of Nanostructured Omniphobic and Superomniphobic Surfaces with Inexpensive CO ₂ Laser Engraver. ACS Applied Materials & Interfaces, 2017, 9, 25656-25661.	4.0	53
13	Coalescence-Induced Self-Propulsion of Droplets on Superomniphobic Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 29328-29336.	4.0	44
14	Hemocompatibility of super-repellent surfaces: current and future. Materials Horizons, 2019, 6, 1596-1610.	6.4	30
15	Metallic superhydrophobic surfaces via thermal sensitization. Applied Physics Letters, 2017, 110, .	1.5	26
16	Superomniphobic Surfaces with Improved Mechanical Durability: Synergy of Hierarchical Texture and Mechanical Interlocking. Advanced Materials Interfaces, 2019, 6, 1900538.	1.9	18
17	Elucidating mechanisms of silica scaling in membrane distillation: effects of membrane surface wettability. Environmental Science: Water Research and Technology, 2019, 5, 2004-2014.	1.2	17
18	Superhydrophobic Coatings for Improved Performance of Electrical Insulators. Macromolecular Materials and Engineering, 2018, 303, 1800313.	1.7	16

Wei Wang

#	Article	IF	CITATIONS
19	Superomniphobic Papers for Onâ€Paper pH Sensors. Advanced Materials Interfaces, 2019, 6, 1900232.	1.9	16
20	Shear stress magnitude and transforming growth factor-βeta 1 regulate endothelial to mesenchymal transformation in a three-dimensional culture microfluidic device. RSC Advances, 2016, 6, 85457-85467.	1.7	14
21	Long-Chain PFASs-Free Omniphobic Membranes for Sustained Membrane Distillation. ACS Applied Materials & Interfaces, 2022, 14, 23808-23816.	4.0	14
22	Design and application of a self-pumping microfluidic staggered herringbone mixer. Microfluidics and Nanofluidics, 2021, 25, 1.	1.0	12
23	Recent advances in membrane distillation using electrospun membranes: advantages, challenges, and outlook. Environmental Science: Water Research and Technology, 2021, 7, 1002-1019.	1.2	11
24	Theoretical study of two-photon absorption properties and up-conversion efficiency of new symmetric organic l€-conjugated molecules for photovoltaic devices. Journal of Molecular Modeling, 2012, 18, 3657-3667.	0.8	8
25	Measurement bias in evanescent wave nano-velocimetry due to tracer size variations. Experiments in Fluids, 2011, 51, 1685-1694.	1.1	7
26	An Experimental Investigation on the Dynamic Impact of Water Droplets onto Soft Surfaces at High Weber Numbers. , 2018, , .		4
27	Quantum mechanical modelling and calculation of two-photon absorption properties of new class †î̂,'-shaped conjugated molecules. Molecular Simulation, 2011, 37, 431-439.	0.9	2
28	Hybrid algorithm for extracting accurate tracer position distribution in evanescent wave nano-velocimetry. Experiments in Fluids, 2016, 57, 1.	1.1	2
29	Waterborne superamphiphobic coatings with network structure for enhancing mechanical durability. RSC Advances, 2022, 12, 16510-16516.	1.7	1
30	Theoretical study of two-photon absorption properties of organic Π-conjugated materials for photovoltaic devices. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	0
31	Theoretical investigation of two-photon absorption properties of naphthalimide derivatives. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	0
32	Development of 3D Microfluidic Device to Study Endothelial-to-Mesenchymal Transformation. , 2013, , .		0
33	Theoretical Study of One- and Two-Photon Absorption Properties of Organic Conjugated Materials for Photovoltaic Devices. , 2008, , .		Ο