
Candelaria Gomez-Manzano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2998072/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
3	A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene, 2000, 19, 2-12.	2.6	679
4	Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Research, 2016, 18, 84.	2.2	552
5	Phase I Study of DNX-2401 (Delta-24-RGD) Oncolytic Adenovirus: Replication and Immunotherapeutic Effects in Recurrent Malignant Glioma. Journal of Clinical Oncology, 2018, 36, 1419-1427.	0.8	477
6	Preclinical Characterization of the Antiglioma Activity of a Tropism-Enhanced Adenovirus Targeted to the Retinoblastoma Pathway. Journal of the National Cancer Institute, 2003, 95, 652-660.	3.0	314
7	Examination of the Therapeutic Potential of Delta-24-RGD in Brain Tumor Stem Cells: Role of Autophagic Cell Death. Journal of the National Cancer Institute, 2007, 99, 1410-1414.	3.0	268
8	Genetic and Epigenetic Modifications of Sox2 Contribute to the Invasive Phenotype of Malignant Gliomas. PLoS ONE, 2011, 6, e26740.	1.1	187
9	Oncolytic Adenovirus and Tumor-Targeting Immune Modulatory Therapy Improve Autologous Cancer Vaccination. Cancer Research, 2017, 77, 3894-3907.	0.4	152
10	Adenovirus-Based Strategies Overcome Temozolomide Resistance by Silencing the O6-Methylguanine-DNA Methyltransferase Promoter. Cancer Research, 2007, 67, 11499-11504.	0.4	130
11	Human Adenovirus Type 5 Induces Cell Lysis through Autophagy and Autophagy-Triggered Caspase Activity. Journal of Virology, 2011, 85, 4720-4729.	1.5	114
12	Anti-vascular endothelial growth factor therapy-induced glioma invasion is associated with accumulation of Tie2-expressing monocytes. Oncotarget, 2014, 5, 2208-2220.	0.8	108
13	The RB-E2F1 Pathway Regulates Autophagy. Cancer Research, 2010, 70, 7882-7893.	0.4	107
14	Delta-24-RGD in Combination With RAD001 Induces Enhanced Anti-glioma Effect via Autophagic Cell Death. Molecular Therapy, 2008, 16, 487-493.	3.7	105
15	Delta-24-RGD Oncolytic Adenovirus Elicits Anti-Glioma Immunity in an Immunocompetent Mouse Model. PLoS ONE, 2014, 9, e97407.	1.1	102
16	Oncolytic DNX-2401 Virus for Pediatric Diffuse Intrinsic Pontine Glioma. New England Journal of Medicine, 2022, 386, 2471-2481.	13.9	102
17	Oncolytic Adenovirus: Preclinical and Clinical Studies in Patients with Human Malignant Gliomas. Current Gene Therapy, 2009, 9, 422-427.	0.9	99
18	The oncolytic virus Delta-24-RGD elicits an antitumor effect in pediatric glioma and DIPG mouse models. Nature Communications, 2019, 10, 2235.	5.8	96

#	Article	IF	CITATIONS
19	Adenovirus-mediated p16/CDKN2 gene transfer suppresses glioma invasion in vitro. Oncogene, 1997, 15, 2049-2057.	2.6	94
20	VEGF Trap induces antiglioma effect at different stages of disease. Neuro-Oncology, 2008, 10, 940-945.	0.6	91
21	Gene Therapy for Gliomas: Molecular Targets, Adenoviral Vectors, and Oncolytic Adenoviruses. Experimental Cell Research, 1999, 252, 1-12.	1.2	84
22	Mechanisms underlying PTEN regulation of vascular endothelial growth factor and angiogenesis. Annals of Neurology, 2003, 53, 109-117.	2.8	81
23	Expression of the Receptor Tyrosine Kinase Tie2 in Neoplastic Glial Cells Is Associated with Integrin β1-Dependent Adhesion to the Extracellular Matrix. Molecular Cancer Research, 2006, 4, 915-926.	1.5	67
24	ICOVIR-5 Shows E2F1 Addiction and Potent Antiglioma Effect <i>In vivo</i> . Cancer Research, 2007, 67, 8255-8263.	0.4	63
25	A novel E1A–E1B mutant adenovirus induces glioma regression in vivo. Oncogene, 2004, 23, 1821-1828.	2.6	60
26	Expression of Transcription Factor E2F1 and Telomerase in Glioblastomas: Mechanistic Linkage and Prognostic Significance. Journal of the National Cancer Institute, 2005, 97, 1589-1600.	3.0	57
27	GPR56/ADGRG1 Inhibits Mesenchymal Differentiation and Radioresistance in Glioblastoma. Cell Reports, 2017, 21, 2183-2197.	2.9	56
28	Tie2/TEK Modulates the Interaction of Glioma and Brain Tumor Stem Cells with Endothelial Cells and Promotes an Invasive Phenotype. Oncotarget, 2010, 1, 700-709.	0.8	56
29	Salinomycin induced ROS results in abortive autophagy and leads to regulated necrosis in glioblastoma. Oncotarget, 2016, 7, 30626-30641.	0.8	55
30	Chapter 13 Autophagy Pathways in Glioblastoma. Methods in Enzymology, 2009, 453, 273-286.	0.4	53
31	Delta-24 Increases the Expression and Activity of Topoisomerase I and Enhances the Antiglioma Effect of Irinotecan. Clinical Cancer Research, 2006, 12, 556-562.	3.2	51
32	Evidence That Phosphatidylinositol 3-Kinase- and Mitogen-activated Protein Kinase Kinase-4/c-Jun NH2-terminal Kinase-dependent Pathways Cooperate to Maintain Lung Cancer Cell Survival. Journal of Biological Chemistry, 2003, 278, 23630-23638.	1.6	48
33	Oncolytic adenovirus research evolution: from cell-cycle checkpoints to immune checkpoints. Current Opinion in Virology, 2015, 13, 33-39.	2.6	45
34	E2F1 in gliomas: A paradigm of oncogene addiction. Cancer Letters, 2008, 263, 157-163.	3.2	42
35	Endoplasmic reticulum stress-inducing drugs sensitize glioma cells to temozolomide through downregulation of MGMT, MPG, and Rad51. Neuro-Oncology, 2016, 18, 1109-1119.	0.6	42
36	The E1B19K Oncoprotein Complexes with Beclin 1 to Regulate Autophagy in Adenovirus-Infected Cells. PLoS ONE, 2011, 6, e29467.	1.1	42

#	Article	IF	CITATIONS
37	Genetically modified adenoviruses against gliomas. Neurology, 2004, 63, 418-426.	1.5	40
38	Phase I Trial of DNX-2401 for Diffuse Intrinsic Pontine Glioma Newly Diagnosed in Pediatric Patients. Neurosurgery, 2018, 83, 1050-1056.	0.6	40
39	Sustained Angiopoietin-2 Expression Disrupts Vessel Formation and Inhibits Glioma Growth. Neoplasia, 2006, 8, 419-428.	2.3	38
40	Tie2/TEK modulates the interaction of glioma and brain tumor stem cells with endothelial cells and promotes an invasive phenotype. Oncotarget, 2010, 1, 700-9.	0.8	37
41	Autophagy regulation in cancer development and therapy. American Journal of Cancer Research, 2011, 1, 362-372.	1.4	36
42	Comparative Effect of Oncolytic Adenoviruses with E1 A or E113-55 kDa Deletions in Malignant Gliomas. Neoplasia, 2005, 7, 48-56.	2.3	35
43	Targeting in Gene Therapy for Gliomas. Archives of Neurology, 1999, 56, 445.	4.9	33
44	TIE2-mediated tyrosine phosphorylation of H4 regulates DNA damage response by recruiting ABL1. Science Advances, 2016, 2, e1501290.	4.7	33
45	Delta-24-RGD combined with radiotherapy exerts a potent antitumor effect in diffuse intrinsic pontine glioma and pediatric high grade glioma models. Acta Neuropathologica Communications, 2019, 7, 64.	2.4	31
46	Transgenic E2F1 Expression in the Mouse Brain Induces a Human-Like Bimodal Pattern of Tumors. Cancer Research, 2007, 67, 4005-4009.	0.4	29
47	Soluble Tie2 overrides the heightened invasion induced by anti-angiogenesis therapies in gliomas. Oncotarget, 2016, 7, 16146-16157.	0.8	29
48	Adenovirus's last trick: You say lysis, we say autophagy. Autophagy, 2008, 4, 118-120.	4.3	28
49	Macrophage Ablation Reduces M2-Like Populations and Jeopardizes Tumor Growth in a MAFIA-Based Glioma Model. Neoplasia, 2015, 17, 374-384.	2.3	28
50	Localized Treatment with Oncolytic Adenovirus Delta-24-RGDOX Induces Systemic Immunity against Disseminated Subcutaneous and Intracranial Melanomas. Clinical Cancer Research, 2019, 25, 6801-6814.	3.2	27
51	Oncolytic adenoviruses as antiglioma agents. Expert Review of Anticancer Therapy, 2006, 6, 697-708.	1.1	26
52	Oncolytic viruses and DNA-repair machinery: overcoming chemoresistance of gliomas. Expert Review of Anticancer Therapy, 2006, 6, 1585-1592.	1.1	26
53	The Oncolytic Adenovirus Δ24-RGD in Combination With Cisplatin Exerts a Potent Anti-Osteosarcoma Activity. Journal of Bone and Mineral Research, 2014, 29, 2287-2296.	3.1	26
54	CD137 and PD-L1 targeting with immunovirotherapy induces a potent and durable antitumor immune response in glioblastoma models. , 2021, 9, e002644.		25

#	Article	IF	CITATIONS
55	Oncolytic Viruses as Therapeutic Tools for Pediatric Brain Tumors. Cancers, 2018, 10, 226.	1.7	23
56	Current strategies to circumvent the antiviral immunity to optimize cancer virotherapy. , 2021, 9, e002086.		23
57	E2F1 and Telomerase: Alliance in the Dark Side. Cell Cycle, 2006, 5, 930-935.	1.3	22
58	Targeting Brain Tumor Stem Cells with Oncolytic Adenoviruses. Methods in Molecular Biology, 2012, 797, 111-125.	0.4	22
59	GITRL-armed Delta-24-RGD oncolytic adenovirus prolongs survival and induces anti-glioma immune memory. Neuro-Oncology Advances, 2019, 1, vdz009.	0.4	21
60	Encountering and Advancing Through Antiangiogenesis Therapy for Gliomas. Current Pharmaceutical Design, 2009, 15, 353-364.	0.9	20
61	Robust infectivity and replication of Delta-24 adenovirus induce cell death in human medulloblastoma. Cancer Gene Therapy, 2004, 11, 713-720.	2.2	19
62	Critical Role of Autophagy in the Processing of Adenovirus Capsid-Incorporated Cancer-Specific Antigens. PLoS ONE, 2016, 11, e0153814.	1.1	19
63	Oncolytic adenoviruses for malignant glioma therapy. Frontiers in Bioscience - Landmark, 2003, 8, d577-588.	3.0	18
64	Abstract CT027: Oncolytic virus DNX-2401 with a short course of temozolomide for glioblastoma at first recurrence: Clinical data and prognostic biomarkers. Cancer Research, 2017, 77, CT027-CT027.	0.4	17
65	TIE2 Associates with Caveolae and Regulates Caveolin-1 To Promote Their Nuclear Translocation. Molecular and Cellular Biology, 2017, 37, .	1.1	15
66	Adenovirally-mediated transfer of E2F-1 potentiates chemosensitivity of human glioma cells to temozolomide and BCNU. International Journal of Oncology, 2001, 19, 359-65.	1.4	14
67	Exploiting 4-1BB immune checkpoint to enhance the efficacy of oncolytic virotherapy for diffuse intrinsic pontine gliomas. JCI Insight, 2022, 7, .	2.3	14
68	Downmodulation of El A Protein Expression as a Novel Strategy to Design Cancer-Selective Adenoviruses. Neoplasia, 2005, 7, 723-729.	2.3	13
69	RB-E2F1. Autophagy, 2010, 6, 1216-1217.	4.3	13
70	Linking inflammation and cancer: the unexpected SYK world. Neuro-Oncology, 2018, 20, 582-583.	0.6	13
71	Cytotoxicity of VEGF121/rGel on vascular endothelial cells resulting in inhibition of angiogenesis is mediated via VEGFR-2. BMC Cancer, 2011, 11, 358.	1.1	12
72	Delta-24-RGD, an Oncolytic Adenovirus, Increases Survival and Promotes Proinflammatory Immune Landscape Remodeling in Models of AT/RT and CNS-PNET. Clinical Cancer Research, 2021, 27, 1807-1820.	3.2	12

#	Article	IF	CITATIONS
73	Analysis of SOX2-Regulated Transcriptome in Glioma Stem Cells. PLoS ONE, 2016, 11, e0163155.	1.1	12
74	Characterization of patient-derived bone marrow human mesenchymal stem cells as oncolytic virus carriers for the treatment of glioblastoma. Journal of Neurosurgery, 2022, 136, 757-767.	0.9	11
75	A novel CRM1â€dependent nuclear export signal in adenoviral E1A protein regulated by phosphorylation. FASEB Journal, 2006, 20, 2603-2605.	0.2	10
76	Oncolytic adenoviruses for the treatment of brain tumors. Current Opinion in Molecular Therapeutics, 2010, 12, 530-7.	2.8	10
77	Delta-24-RGD Induces Cytotoxicity of Glioblastoma Spheroids in Three Dimensional PEG Microwells. IEEE Transactions on Nanobioscience, 2015, 14, 946-951.	2.2	9
78	Overexpression of E2F-1 leads to bax-independent cell death in human glioma cells. International Journal of Oncology, 2002, 21, 1015.	1.4	6
79	Hitchhiking to brain tumours: stem cell delivery of oncolytic viruses. Lancet Oncology, The, 2021, 22, 1049-1051.	5.1	6
80	miR-425-5p, a SOX2 target, regulates the expression of FOXJ3 and RAB31 and promotes the survival of GSCs. Archives of Clinical and Biomedical Research, 2020, 04, 221-238.	0.1	6
81	Local Treatment of a Pediatric Osteosarcoma Model with a 4-1BBL Armed Oncolytic Adenovirus Results in an Antitumor Effect and Leads to Immune Memory. Molecular Cancer Therapeutics, 2022, 21, 471-480.	1.9	6
82	Gene therapy. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 104, 331-338.	1.0	5
83	Remission of liquid tumors and SARS-CoV-2 infection: A literature review. Molecular Therapy - Oncolytics, 2022, 26, 135-140.	2.0	5
84	Advances in Translational Research in Neuro-oncology. Archives of Neurology, 2011, 68, 303-8.	4.9	4
85	Intratumoral heterogeneity and intraclonal plasticity: from warburg to oxygen and back again. Neuro-Oncology, 2014, 16, 1025-1026.	0.6	4
86	Oncolytic Virotherapy for Gliomas. , 2018, , 357-384.		4
87	An immune-competent, replication-permissive Syrian Hamster glioma model for evaluating Delta-24-RGD oncolytic adenovirus. Neuro-Oncology, 2021, 23, 1911-1921.	0.6	4
88	Adenovirus, autophagy and lysis: ecstasies and agonies. Future Virology, 2011, 6, 1161-1164.	0.9	3
89	Normalizing tumoral vessels to treat cancer: an out-of-the-box strategy involving TIE2 pathway. Translational Cancer Research, 2017, 6, S317-S320.	0.4	3
90	Malignant Gliomas: Role of E2F1 Transcription Factor. , 2011, , 89-97.		2

Malignant Gliomas: Role of E2F1 Transcription Factor., 2011,, 89-97. 90

6

#	Article	IF	CITATIONS
91	Advances in Oncolytic Virotherapy for Brain Tumors. , 2014, , 137-151.		1
92	Conditionally Replicative Adenoviruses—Clinical Trials. , 2016, , 335-348.		1
93	EXTH-09. LOOKING FOR AÂCURE: DELTA-24-RDG AND RADIOTHERAPY FOR DIPG TREATMENT. Neuro-Oncology, 2016, 18, vi61-vi61.	0.6	1
94	EPCT-04. RESULTS OF A PHASE 1 STUDY OF THE ONCOLYTIC ADENOVIRUS DNX-2401 WITH RADIOTHERAPY FOR NEWLY DIAGNOSED DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG). Neuro-Oncology, 2021, 23, i47-i47.	0.6	1
95	Replicating Viruses for Brain Tumor Treatment. , 2006, , 293-325.		1
96	A Window of Opportunity to Overcome Therapeutic Failure in Neuro-Oncology. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2022, 42, 139-146.	1.8	1
97	Interspecies adenovirus fiber shows "evolutionary" advantage for oncolytic therapy of gliomas. Cancer Biology and Therapy, 2008, 7, 794-796.	1.5	0
98	Antitumor immune response during glioma virotherapy. Neuro-Oncology, 2019, 21, 1087-1088.	0.6	0
99	Tumor Suppressor Gene Therapy for Brain Tumors. , 1998, , 205-229.		0