G Ya Khadzhai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2997424/publications.pdf

Version: 2024-02-01

567281 610901 70 645 15 citations h-index papers

g-index 70 70 70 77 docs citations times ranked citing authors all docs

24

#	Article	IF	CITATIONS
1	Effect of praseodymium on the electrical resistance of YВа2Đ¡u3Đž7â~'δ single crystals. Solid State Communications, 2014, 190, 18-22.	1.9	54
2	Resistive measurements of the pseudogap in lightly Pr-doped <mml:math altimg="si0012.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">Y</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo><i 2015,="" 204,="" 64-66.<="" communications,="" solid="" state="" td=""><td>1.9 mml:mi>x<</td><td>48 </td></i></mml:mo></mml:mrow></mml:msub></mml:math>	1.9 mml:mi>x<	48
3	Fluctuation conductivity of oxygen underdoped YBa2Cu3O7â^'δ single crystals. Physica B: Condensed Matter, 2014, 436, 88-90.	2.7	47
4	Relaxation of the normal electrical resistivity induced by high-pressure in strongly underdoped YBa2Cu3O7–δsingle crystals. Physica B: Condensed Matter, 2012, 407, 4470-4472.	2.7	45
5	Effect of high pressure on the fluctuation paraconductivity in Y0.95Pr0.05Ba2Cu3O7â^'δ single crystals. Current Applied Physics, 2014, 14, 1779-1782.	2.4	45
6	Transverse conductivity in Pr $\$ y \$ y Y \$ _{1-y}\$ 1 - y Ba \$ _2\$\$ 2 Cu \$ _3\$\$ 3 O \$ _{7-delta}\$ 7 - Î single crystals in a wide range of praseodymium concentrations. Applied Physics A: Materials Science and Processing, 2014, 117, 997-1002.	2.3	44
7	Effect of high pressure on the electrical resistivity of optimally doped YBa2Cu3O7â^' single crystals with unidirectional planar defects. Physica B: Condensed Matter, 2013, 422, 33-35.	2.7	40
8	Evolution of the electrical resistance of \$\$f{hbox {YBa}_2hbox {Cu}_3hbox {O}_{7-varvecdelta }}\$\$ YBa 2 Cu 3 O 7 - δ single crystals in the course of long-term aging. Journal of Materials Science: Materials in Electronics, 2014, 25, 5226-5230.	2.2	38
9	Effect of defects on the basal-plane resistivity of \$\$hbox {YBa}_2hbox {Cu}_3hbox {O}_{7-delta}\$\$ YBa 2 Cu 3 O 7 - Î and \$\$hbox {Y}_{1-y}hbox {Pr}_yhbox {Ba}_2hbox {Cu}_3hbox {O}_{7-x}\$\$ Y 1 - y Pr y Ba 2 Cu 3 O 7 - x single crystals. Journal of Materials Science: Materials in Electronics, 2015, 26, 1435-1440.	2.2	22
10	Effect of electron irradiation on the pseudogap temperature dependence of YBa \$\$_2\$\$ 2 Cu \$\$_3\$\$. Journal of Materials Science: Materials in Electronics, 2017, 28, 15886-15890.	2.2	22
11	Influence of planar and point defects on the basal-plane conductivity of HoBaCuO single crystals. Physica C: Superconductivity and Its Applications, 2015, 516, 58-61.	1.2	20
12	Conductivity of single-crystal Y1â^' <i>y</i> Pr <i>y</i> Ba2Cu3O7â^'Î^ over a wide range of temperatures and Pr concentrations. Low Temperature Physics, 2014, 40, 488-491.	0.6	16
13	Modification of superconducting and resistive properties ofÂHoBa2Cu3O7â^Î single crystals under application-removal of high hydrostatic pressure. Modern Physics Letters B, 2016, 30, 1650188.	1.9	16
14	Phase segregation and the effect of high pressure on the electro-transport in Y _{0.95} Pr _{0.05} Ba ₂ Cu<td>ntr.øsub>3</td><td>}√!sub><fon< td=""></fon<></td>	ntr.øsub>3	} √!s ub> <fon< td=""></fon<>
15	Room-temperature annealing effects on the basal-plane resistivity of optimally doped YBa 2 Cu 3 O <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>7</mml:mn></mml:mrow></mml:msub></mml:math>	1.2 > <td>15 ath>single</td>	15 ath>single
16	crystals. Physica C: Superconductivity and its Applications, 2018, 545, 14-17. Transverse conductivity in Y\$_{1-y}\$Pr\$_{y}\$Ba\$_{2}\$Cu\$_{3}\$O\$_{7-delta}\$ single crystals. Materials Research Express, 2014, 1, 026303.	1.6	14
17	Charge and heat transfer of the Ti3AlC2 MAX phase. Journal of Materials Science: Materials in Electronics, 2018, 29, 11478-11481.	2.2	11
18	Effect of electron irradiation on the fluctuation conductivity in YBa2Cu3O7â^δsingle crystals. Journal of Materials Science: Materials in Electronics, 2018, 29, 7725-7729.	2.2	10

#	Article	IF	CITATIONS
19	Effect of electron irradiation and Pr doping on the charge transport in YBCO single crystals. Solid State Communications, 2018, 282, 5-8.	1.9	8
20	Evolution of the electrical resistance of YBa2Cu3O7â^Î with Î d≠0.45 under high hydrostatic pressures. Low Temperature Physics, 2012, 38, 255-257.	0.6	7
21	Electrical and thermal conductivity of the Ti3AlC2 MAX phase at low temperatures. Low Temperature Physics, 2018, 44, 451-452.	0.6	7
22	Conductivity anisotropy in Y _y Ba ₂ Cu <td>> < studo > 3 <</td> <td>/sub>(</td>	> < studo > 3 <	/sub> (
23	Conductivity relaxation in strongly underdoped <mml:math altimg="si0018.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi>YBa</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mnoy><mml:mnoy><mml:mnoy><mml:mnoy><mml:mnoy><mml:mnoy><mml:mnoy><mml:mnoy><mml:mnoy><mml:mnoy><mml:mnoy><mml:mnoy><mml:mnoy><mml:mnoy><mml:mnoy><mml:mnoy><mml:mnoy><mml:mnoy="mml:mnoy"><mml:mnoy="mml:mnoy"><mml:mnoy="m< td=""><td>mារ!:rnn>2 <mml:mi></mml:mi></td><td>?<!--<b-->:mml:mn> < δ <</td></mml:mnoy="m<></mml:mnoy="mml:mnoy"></mml:mnoy="mml:mnoy"></mml:mnoy></mml:mnoy></mml:mnoy></mml:mnoy></mml:mnoy></mml:mnoy></mml:mnoy></mml:mnoy></mml:mnoy></mml:mnoy></mml:mnoy></mml:mnoy></mml:mnoy></mml:mnoy></mml:mnoy></mml:mnoy></mml:mnoy></mml:mrow></mml:mrow></mml:mrow></mml:math>	m ារ!:r nn>2 <mml:mi></mml:mi>	? <b :mml:mn> < δ <
24	Physica B. Condensed Matter, 2017, 518, 47-50. Effect of electron irradiation on the transverse conductivity of the YBa2Cu3O7–δsingle crystal. Low Temperature Physics, 2019, 45, 135-138.	0.6	6
25	Resistivity anisotropy in YBCO single crystals irradiated with fast electrons. Physica B: Condensed Matter, 2019, 566, 121-124.	2.7	6
26	Broadening of the superconducting transition in single crystal Yâ€Baâ€Cuâ€O. Low Temperature Physics, 2017, 43, 1119-1121.	0.6	5
27	Tuning electric charge scattering in YBCO single crystals via irradiation with MeV electrons. Journal of Materials Science: Materials in Electronics, 2019, 30, 241-245.	2.2	5
28	Transverse resistance of YBa2Cu3O7â ⁻ δ single crystals. Current Applied Physics, 2015, 15, 617-621.	2.4	4
29	Single-file diffusion of oxygen ions in the compound YBa2Cu3O7â^'x. Low Temperature Physics, 2016, 42, 936-939.	0.6	4
30	Quenching and room-temperature annealing effects on the conductivity of underdoped HoBa2Cu3O7â [~] δ. Modern Physics Letters B, 2018, 32, 1750367.	1.9	4
31	Effect of electron irradiation on the scattering of carriers in YBa2Cu3O7â^î^single crystals. Low Temperature Physics, 2018, 44, 860-862.	0.6	4
32	Annealing of defects after irradiation of YBCO single crystals with fast electrons. Physica C: Superconductivity and Its Applications, 2019, 565, 1353507.	1.2	4
33	Transverse resistance in Y1â^'yPryBa2Cu3O7â^'δ at large praseodymium concentrations. Physica B: Condensed Matter, 2014, 451, 84-86.	2.7	3
34	Electric Charge Transfer and Scattering of Its Carriers in Cuprates of the 1–2–3 System. Journal of Low Temperature Physics, 2016, 183, 59-68.	1.4	3
35	Enhanced oxygen diffusion in nano-structured ceria. Journal of Materials Science: Materials in Electronics, 2018, 29, 4743-4748.	2.2	3
36	The effect of annealing on the transverse electrotransport in YBa2Cu3O7â€"δ single crystals irradiated with high-energy electrons. Low Temperature Physics, 2019, 45, 1137-1139.	0.6	3

#	Article	IF	CITATIONS
37	Influence of defects on anisotropy of electrical resistivity in \$\$hbox {YBa}_2hbox {Cu}_3hbox {O}_{7-delta}\$\$. Journal of Materials Science: Materials in Electronics, 2020, 31, 7708-7714.	2.2	3
38	Influence of Uniform Compression on the Temperature Dependence of the Pseudogap of Medium-Praseodymium-Doped Y1â^'xPrxBa2Cu3O7â^'δ Single Crystals. Journal of Low Temperature Physics, 2021, 203, 430-436.	1.4	3
39	Electron transport and stability of the oxygen subsystem of YBa2Cu3O7â^δsingle crystals upon prolonged exposure to air. Low Temperature Physics, 2014, 40, 1044-1047.	0.6	2
40	Redistribution of oxygen ions in single crystal YBa2Cu3O7- <i>x</i> owing to external hydrostatic pressure. Low Temperature Physics, 2018, 44, 41-44.	0.6	2
41	Influence of annealing on the electrical resistance of YBCO single crystals. Journal of Materials Science: Materials in Electronics, 2018, 29, 6601-6606.	2.2	2
42	Evolution of the transverse electrical resistivity of YBa2Cu3O7â€"δ single crystals under irradiation with high-energy electrons. Low Temperature Physics, 2019, 45, 785-788.	0.6	2
43	Incoherent charge transport induced by irradiation of YBCO single crystals with MeV electrons. Journal of Materials Science: Materials in Electronics, 2019, 30, 4766-4769.	2.2	2
44	Suppression of vortex lattice melting in YBCO via irradiation with fast electrons. Journal of Materials Science: Materials in Electronics, 2019, 30, 6688-6692.	2.2	2
45	The effect of high-temperature annealing on the temperature dependence of the pseudogap of YBa2Cu3O7–Î′ single crystals irradiated with high-energy electrons. Low Temperature Physics, 2019, 45, 1218-1221.	0.6	2
46	Effect of high pressure on conductivity in the basal plane of Y1-4PrxBa2Cu3O7-Î′ single crystals lightly doped of praseodymium. Functional Materials, 2015, 22, 5-13.	0.1	2
47	Suppression of superconductivity in YBa ₂ Cu ₃ O _{7â~δ} single crystals upon irradiation with fast electrons. Low Temperature Physics, 2022, 48, 271-273.	0.6	2
48	Effect of high pressure on temperature dependences of the resistivity in the ab-plane of Y0.77Pr0.23Ba2Cu3O7-l´single crystals. Journal of Materials Science: Materials in Electronics, 2022, 33, 9875-9884.	2.2	2
49	Production of high-purity hafnium and the study of some its properties. Russian Metallurgy (Metally), 2011, 2011, 616-621.	0.5	1
50	Electrical resistance relaxation induced by high pressure in single crystals of YBa2Cu3O7â^Î. Low Temperature Physics, 2013, 39, 530-533.	0.6	1
51	Transverse resistance of YBa2Cu3O7â^Î'single crystals with different oxygen deficiency. Low Temperature Physics, 2015, 41, 874-878.	0.6	1
52	Role of twins in variations in the conductivity characteristics of single-crystal HoBa2Cu3O7-δduring reversible changes in hydrostatic pressure. Low Temperature Physics, 2016, 42, 739-744.	0.6	1
53	High pressure-induced relaxation of electrical resistance in weakly doped ĐĐ¾Ba2Cu3O7–x single crystals. Low Temperature Physics, 2019, 45, 465-467.	0.6	1
54	Transverse conductivity and the pseudogap in YBCO single crystals irradiated with fast electrons. Modern Physics Letters B, 2019, 33, 1950233.	1.9	1

#	Article	IF	CITATIONS
55	Thermal conductivity of Al2O3-SiC nanocomposites prepared by the electroconsolidation method. Low Temperature Physics, 2019, 45, 419-421.	0.6	1
56	Electron irradiation and annealing effects on the pseudogap in optimally doped YBCO single crystals. Modern Physics Letters B, 2020, 34, 2050151.	1.9	1
57	Effect of transverse and longitudinal magnetic field on the excess conductivity of YBa2Cu3-zAlzO7-Î′ single crystals with a given topology of plane defects. Functional Materials, 2013, 20, 208-216.	0.1	1
58	Effect of pressure on the critical temperature of single-crystal Y0.95Pr0.05Ba2Cu3O7–Πwith a specified planar defect geometry. Low Temperature Physics, 2014, 40, 699-701.	0.6	0
59	Transverse resistance in HoBa2Cu3O7â^î^single crystals. Modern Physics Letters B, 2015, 29, 1550232.	1.9	O
60	Diffusion of the superconducting transition in HTSC. Journal of Materials Science: Materials in Electronics, 2017, 28, 10862-10865.	2.2	0
61	Electrophysical properties of nanoporous cerium dioxide–water system. Journal of Materials Science: Materials in Electronics, 2017, 28, 2157-2159.	2.2	O
62	Annealing Effects on the Normal-State Resistive Properties of Underdoped Cuprates. Journal of Low Temperature Physics, 2018, 191, 184-193.	1.4	0
63	Some peculiarities of labile oxygen kinetics in underdoped single crystals of YBa2Cu3O7- <i>x</i> . Low Temperature Physics, 2018, 44, 346-348.	0.6	O
64	Effect of high pressure on various diffusion mechanisms in oxygen-deficient ReBa2Cu3O7â^'x (Re = Y,) Tj ETQq0 C	0 rgBT /0 1.9	Overlock 10 T
65	The effect of the chaotic pinning potential on intrinsic pinning in YBa2Cu3O7â^î^î single crystals. Low Temperature Physics, 2020, 46, 1063-1069.	0.6	O
66	The effect of irradiation with high-energy electrons on the superconducting transition and the electrical resistivity anisotropy of YĐ'а2Đ;u3Đž7â°Î′ single crystals. Low Temperature Physics, 2020, 46, 639-64	2. ^{0.6}	0
67	Short notes: Effect of hydrostatic pressure up to 12 kbar on the electrical resistance of Y0.77Pr0.23Ba2Cu3O7â^Î single crystals. Low Temperature Physics, 2021, 47, 166-169.	0.6	O
68	Structure and transport properties of the Fe0.5Ni0.5 composite. Low Temperature Physics, 2021, 47, 170-172.	0.6	0
69	Structure-induced features of transport processes in an electroconsolidated FeNi composite. Modern Physics Letters B, 2021, 35, 2150425.	1.9	O
70	Scattering of electrons in oxygen underdoped YBa2Cu3O7-x single crystals. Functional Materials, 2014, 21, 137-141.	0.1	0