Jonathan J Ewbank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2997340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	C. elegans: out on an evolutionary limb. Immunogenetics, 2022, 74, 63-73.	1.2	7
2	Pandemic preparedness — Europe launches research consortium. Nature, 2022, 603, 228-228.	13.7	1
3	Innate Immunity Promotes Sleep through Epidermal Antimicrobial Peptides. Current Biology, 2021, 31, 564-577.e12.	1.8	35
4	Reduced peroxisomal import triggers peroxisomal retrograde signaling. Cell Reports, 2021, 34, 108653.	2.9	9
5	Ubiquitin-related processes and innate immunity in C. elegans. Cellular and Molecular Life Sciences, 2021, 78, 4305-4333.	2.4	8
6	Comparison of lipidome profiles of Caenorhabditis elegans—results from an inter-laboratory ring trial. Metabolomics, 2021, 17, 25.	1.4	3
7	Antagonistic fungal enterotoxins intersect at multiple levels with host innate immune defences. PLoS Genetics, 2021, 17, e1009600.	1.5	11
8	An integrated view of innate immune mechanisms in <i>C. elegans</i> . Biochemical Society Transactions, 2021, 49, 2307-2317.	1.6	13
9	Increased Pathogenicity of the Nematophagous Fungus Drechmeria coniospora Following Long-Term Laboratory Culture. Frontiers in Fungal Biology, 2021, 2, .	0.9	0
10	Long-read only assembly of Drechmeria coniospora genomes reveals widespread chromosome plasticity and illustrates the limitations of current nanopore methods. GigaScience, 2020, 9, .	3.3	11
11	Fabrication of sharp silicon arrays to wound Caenorhabditis elegans. Scientific Reports, 2020, 10, 3581.	1.6	8
12	Non-Canonical Caspase Activity Antagonizes p38 MAPK Stress-Priming Function to Support Development. Developmental Cell, 2020, 53, 358-369.e6.	3.1	25
13	Microtubule plus-end dynamics link wound repair to the innate immune response. ELife, 2020, 9, .	2.8	27
14	Modulatory upregulation of an insulin peptide gene by different pathogens in <i>C.Âelegans</i> . Virulence, 2018, 9, 648-658.	1.8	25
15	De novo assembly of the complex genome of Nippostrongylus brasiliensis using MinION long reads. BMC Biology, 2018, 16, 6.	1.7	35
16	Evolutionary plasticity in the innate immune function of Akirin. PLoS Genetics, 2018, 14, e1007494.	1.5	31
17	Signaling in the innate immune response. WormBook, 2018, 2018, 1-35.	5.3	130
18	Polyethylene Glycol-mediated Transformation of Drechmeria coniospora. Bio-protocol, 2017, 7, e2157.	0.2	4

JONATHAN J EWBANK

#	Article	IF	CITATIONS
19	A quantitative genome-wide RNAi screen in C. elegans for antifungal innate immunity genes. BMC Biology, 2016, 14, 35.	1.7	60
20	GPCRs in invertebrate innate immunity. Biochemical Pharmacology, 2016, 114, 82-87.	2.0	22
21	Local and long-range activation of innate immunity by infection and damage in C. elegans. Current Opinion in Immunology, 2016, 38, 1-7.	2.4	49
22	Comparative Genomic Analysis of Drechmeria coniospora Reveals Core and Specific Genetic Requirements for Fungal Endoparasitism of Nematodes. PLoS Genetics, 2016, 12, e1006017.	1.5	45
23	Clone Mapper: An Online Suite of Tools for RNAi Experiments in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2014, 4, 2137-2145.	0.8	17
24	Genome Evolution and Plasticity of Serratia marcescens, an Important Multidrug-Resistant Nosocomial Pathogen. Genome Biology and Evolution, 2014, 6, 2096-2110.	1.1	155
25	ICeE an interface forC. elegansexperiments. Worm, 2014, 3, e959420.	1.0	1
26	Activation of a G protein–coupled receptor by its endogenous ligand triggers the innate immune response of Caenorhabditis elegans. Nature Immunology, 2014, 15, 833-838.	7.0	113
27	Independent Synchronized Control and Visualization of Interactions between Living Cells and Organisms. Biophysical Journal, 2014, 106, 2096-2104.	0.2	25
28	Defects in the C. elegans acyl-CoA Synthase, acs-3, and Nuclear Hormone Receptor, nhr-25, Cause Sensitivity to Distinct, but Overlapping Stresses. PLoS ONE, 2014, 9, e92552.	1.1	35
29	A UPR-independent infection-specific role for a BiP/GRP78 protein in the control of antimicrobial peptide expression in <i>C. elegans </i> epidermis. Virulence, 2012, 3, 299-308.	1.8	29
30	The Origin and Function of Anti-Fungal Peptides in C. elegans: Open Questions. Frontiers in Immunology, 2012, 3, 237.	2.2	28
31	Quantitative and Automated High-throughput Genome-wide RNAi Screens in C. elegans . Journal of Visualized Experiments, 2012, , .	0.2	21
32	A Genome-Wide Collection of Mos1 Transposon Insertion Mutants for the C. elegans Research Community. PLoS ONE, 2012, 7, e30482.	1.1	47
33	The Pseudokinase NIPI-4 Is a Novel Regulator of Antimicrobial Peptide Gene Expression. PLoS ONE, 2012, 7, e33887.	1.1	36
34	Unusual Regulation of a STAT Protein by an SLC6 Family Transporter in C.Âelegans Epidermal Innate Immunity. Cell Host and Microbe, 2011, 9, 425-435.	5.1	93
35	A Comprehensive Analysis of Gene Expression Changes Provoked by Bacterial and Fungal Infection in C. elegans. PLoS ONE, 2011, 6, e19055.	1.1	169
36	<i>C. elegans</i> : model host and tool for antimicrobial drug discovery. DMM Disease Models and Mechanisms, 2011, 4, 300-304.	1.2	108

JONATHAN J EWBANK

#	Article	IF	CITATIONS
37	Cellular Homeostasis: Coping with ER Overload During an Immune Response. Current Biology, 2010, 20, R452-R455.	1.8	4
38	The fatty acid synthase <i>fasn-1</i> acts upstream of WNK and Ste20/GCK-VI kinases to modulate antimicrobial peptide expression in <i>C. elegans</i> epidermis. Virulence, 2010, 1, 113-122.	1.8	50
39	SMF-1, SMF-2 and SMF-3 DMT1 Orthologues Regulate and Are Regulated Differentially by Manganese Levels in C. elegans. PLoS ONE, 2009, 4, e7792.	1.1	80
40	Negative regulation of <i>Caenorhabditis elegans</i> epidermal damage responses by death-associated protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1457-1461.	3.3	70
41	Caenorhabditis elegans Semi-Automated Liquid Screen Reveals a Specialized Role for the Chemotaxis Gene cheB2 in Pseudomonas aeruginosa Virulence. PLoS Pathogens, 2009, 5, e1000540.	2.1	87
42	Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGF-β signaling pathway in Caenorhabditis elegans epidermis. Nature Immunology, 2009, 10, 249-256.	7.0	173
43	Antifungal Innate Immunity in C. elegans: PKCÎ′ Links G Protein Signaling and a Conserved p38 MAPK Cascade. Cell Host and Microbe, 2009, 5, 341-352.	5.1	106
44	Pathogenomics: An updated European Research Agenda. Infection, Genetics and Evolution, 2008, 8, 386-393.	1.0	8
45	Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology, 2008, 26, 909-915.	9.4	1,012
46	Distinct Innate Immune Responses to Infection and Wounding in the C. elegans Epidermis. Current Biology, 2008, 18, 481-489.	1.8	267
47	Anti-Fungal Innate Immunity in C. elegans Is Enhanced by Evolutionary Diversification of Antimicrobial Peptides. PLoS Pathogens, 2008, 4, e1000105.	2.1	212
48	Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2295-2300.	3.3	320
49	A Model of Bacterial Intestinal Infections in Drosophila melanogaster. PLoS Pathogens, 2007, 3, e173.	2.1	299
50	Infection in a dish: high-throughput analyses of bacterial pathogenesis. Current Opinion in Microbiology, 2007, 10, 10-16.	2.3	60
51	Genome-wide investigation reveals pathogen-specific and shared signatures in the response of Caenorhabditis elegans to infection. Genome Biology, 2007, 8, R194.	13.9	194
52	The genetics of pathogen avoidance in <i>Caenorhabditis elegans</i> . Molecular Microbiology, 2007, 66, 563-570.	1.2	81
53	A Reverse Genetic Analysis of Components of the Toll Signaling Pathway in Caenorhabditis elegans. Current Biology, 2006, 16, 1477.	1.8	1
54	A semi-automated high-throughput approach to the generation of transposon insertion mutants in the nematode Caenorhabditis elegans. Nucleic Acids Research, 2006, 35, e11-e11.	6.5	24

#	Article	IF	CITATIONS
55	A generalized transducing phage (Ï+IF3) for the genomically sequenced Serratia marcescens strain Db11: a tool for functional genomics of an opportunistic human pathogen. Microbiology (United Kingdom), 2006, 152, 1701-1708.	0.7	58
56	Signaling in the immune response. WormBook, 2006, , 1-12.	5.3	64
57	'TaiLoRing' the response of dendritic cells to pathogens. Nature Immunology, 2005, 6, 749-750.	7.0	18
58	Pathogen Avoidance Using Toll Signaling in C. elegans. , 2005, , 162-167.		0
59	XNP-1/ATR-X acts with RB, HP1 and the NuRD complex during larval development in C. elegans. Developmental Biology, 2005, 278, 49-59.	0.9	31
60	Evolution of the innate immune system: the worm perspective. Immunological Reviews, 2004, 198, 36-58.	2.8	195
61	TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nature Immunology, 2004, 5, 488-494.	7.0	433
62	Diversity and specificity in the interaction between Caenorhabditis elegans and the pathogen Serratia marcescens. BMC Evolutionary Biology, 2004, 4, 49.	3.2	126
63	Immunity in Caenorhabditis elegans. Current Opinion in Immunology, 2004, 16, 4-9.	2.4	107
64	Genetic Models in Pathogenesis. Annual Review of Genetics, 2004, 38, 347-363.	3.2	55
65	Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO Journal, 2003, 22, 1451-1460.	3.5	310
66	Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nature Reviews Genetics, 2003, 4, 380-390.	7.7	157
67	Le nématode Caenorhabditis elegans, un modèle d'étude pour les interactions hôte-bactéries pathogènes. Société De Biologie Journal, 2003, 197, 375-378.	0.3	3
68	Diverse Bacteria Are Pathogens of Caenorhabditis elegans. Infection and Immunity, 2002, 70, 4705-4707.	1.0	165
69	Inducible Antibacterial Defense System in C. elegans. Current Biology, 2002, 12, 1209-1214.	1.8	417
70	Tackling both sides of the host–pathogen equation with Caenorhabditis elegans. Microbes and Infection, 2002, 4, 247-256.	1.0	105
71	Comment on Lee M Silver's article †Reprogenetics: third millenium speculation' in EMBO reports , November 2000. EMBO Reports, 2001, 2, 164-164.	2.0	0
72	A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Current Biology, 2001, 11, 809-821.	1.8	376

JONATHAN J EWBANK

#	Article	IF	CITATIONS
73	The Caenorhabditis elegans unc-32 Gene Encodes Alternative Forms of a Vacuolar ATPase aSubunit. Journal of Biological Chemistry, 2001, 276, 11913-11921.	1.6	69
74	Caenorhabditis elegans is a model host for Salmonella typhimurium. Current Biology, 2000, 10, 1543-1545.	1.8	254
75	Caenorhabditis elegans for the study of host–pathogen interactions. Trends in Microbiology, 2000, 8, 142-144.	3.5	113
76	Biotech companies must get back to basics to weigh up risks. Nature, 1999, 401, 207-207.	13.7	1
77	Characterization of xnp-1, a Caenorhabditis elegans gene similar to the human XNP/ATR-X gene. Gene, 1999, 236, 13-19.	1.0	6
78	Problems of germline therapy. Nature, 1998, 392, 645-645.	13.7	22
79	Molecular genetics of life span in C. elegans: How much does it teach us?. Trends in Genetics, 1998, 14, 14-20.	2.9	101
80	Structural and Functional Conservation of theCaenorhabditis elegansTiming Geneclk-1. Science, 1997, 275, 980-983.	6.0	312
81	What is the molten globule?. Nature Structural Biology, 1995, 2, 10-10.	9.7	28
82	Conformation of GroEL-bound \hat{l} ±-lactalbumin probed by mass spectrometry. Nature, 1994, 372, 646-651.	13.7	221
83	Disulfide-Rearranged Molten Globule State of .alphaLactalbumin. Biochemistry, 1994, 33, 1534-1538.	1.2	58
84	Pathway of disulfide-coupled unfolding and refolding of bovine .alphalactalbumin. Biochemistry, 1993, 32, 3677-3693.	1.2	134
85	Structural characterization of the disulfide folding intermediates of bovine .alphalactalbumin. Biochemistry, 1993, 32, 3694-3707.	1.2	141
86	Protein folding by stages. Current Biology, 1992, 2, 347-349.	1.8	8
87	The molten globule protein conformation probed by disulphide bonds. Nature, 1991, 350, 518-520.	13.7	156
88	Large scale high-performance liquid chromatography of urogastrone produced by recombinant DNA technology. Journal of Chromatography A, 1986, 362, 443-449.	1.8	10