Claire M Edwards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2997280/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological relationship between bone and myeloma cells. , 2022, , 1005-1017.		о
2	The antidiabetic drug metformin acts on the bone microenvironment to promote myeloma cell adhesion to preosteoblasts and increase myeloma tumour burden in vivo. Translational Oncology, 2022, 15, 101301.	1.7	6
3	Metabolic profiling of prostate cancer in skeletal microenvironments identifies G6PD as a key mediator of growth and survival. Science Advances, 2022, 8, eabf9096.	4.7	19
4	Editorial $\hat{a} \in $ Cancer and Bone special issue. Bone, 2022, 158, 116369.	1.4	0
5	Morphogens and growth factor signalling in the myeloma bone-lining niche. Cellular and Molecular Life Sciences, 2021, 78, 4085-4093.	2.4	6
6	Advances in the molecular pharmacology of bone and cancerâ€related bone diseases. British Journal of Pharmacology, 2021, 178, 1889-1890.	2.7	0
7	Myeloma and marrow adiposity: Unanswered questions and future directions. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101541.	2.2	3
8	Metabolism in the Tumour-Bone Microenvironment. Current Osteoporosis Reports, 2021, 19, 494-499.	1.5	10
9	Myeloma Cells Downâ€Regulate Adiponectin in Bone Marrow Adipocytes Via TNFâ€Alpha. Journal of Bone and Mineral Research, 2020, 35, 942-955.	3.1	47
10	Modeling the Human Bone–Tumor Niche: Reducing and Replacing the Need for Animal Data. JBMR Plus, 2020, 4, e10356.	1.3	5
11	Bone Marrow Adipose Tissue and Cancer. , 2020, , 265-272.		0
12	Small Animal Video Tracking for Activity and Path Analysis Using a Novel Open-Source Multi-Platform Application (AnimApp). Scientific Reports, 2019, 9, 12343.	1.6	19
13	Transcriptomic profiling of the myeloma bone-lining niche reveals BMP signalling inhibition to improve bone disease. Nature Communications, 2019, 10, 4533.	5.8	46
14	Multiple myeloma increases nerve growth factor and other pain-related markers through interactions with the bone microenvironment. Scientific Reports, 2019, 9, 14189.	1.6	14
15	Animal Models of Multiple Myeloma. Methods in Molecular Biology, 2019, 1914, 349-360.	0.4	3
16	Bone marrow adiposity and multiple myeloma. Bone, 2019, 118, 42-46.	1.4	22
17	Contributions of the Bone Microenvironment to Monoclonal Gammopathy of Undetermined Significance Pathogenesis. Current Osteoporosis Reports, 2018, 16, 635-641.	1.5	6
18	Adipokines, adiposity, and bone marrow adipocytes: Dangerous accomplices in multiple myeloma. Journal of Cellular Physiology, 2018, 233, 9159-9166.	2.0	45

CLAIRE M EDWARDS

#	Article	IF	CITATIONS
19	Metformin and Prostate Cancer: a New Role for an Old Drug. Current Urology Reports, 2017, 18, 46.	1.0	77
20	Tumour-derived alkaline phosphatase regulates tumour growth, epithelial plasticity and disease-free survival in metastatic prostate cancer. British Journal of Cancer, 2017, 116, 227-236.	2.9	132
21	A loss of host-derived MMP-7 promotes myeloma growth and osteolytic bone disease in vivo. Molecular Cancer, 2017, 16, 49.	7.9	14
22	Bone Marrow Adipose Tissue: A New Player in Cancer Metastasis to Bone. Frontiers in Endocrinology, 2016, 7, 90.	1.5	52
23	New approaches to targeting the bone marrow microenvironment in multiple myeloma. Current Opinion in Pharmacology, 2016, 28, 43-49.	1.7	25
24	The Role of the Microenvironment in Prostate Cancer-Associated Bone Disease. Current Osteoporosis Reports, 2016, 14, 170-177.	1.5	11
25	The role of bone marrow adipocytes in bone metastasis. Journal of Bone Oncology, 2016, 5, 121-123.	1.0	33
26	Preclinical animal models of multiple myeloma. BoneKEy Reports, 2016, 5, 772.	2.7	41
27	Transcriptome Profiling of the Myeloma-Bone Niche Identifies BMP Signaling Role in Bone Destruction and Niche Maintenance, and Potential As a Therapeutic Target. Blood, 2016, 128, 483-483.	0.6	0
28	Diet-induced obesity promotes a myeloma-like condition in vivo. Leukemia, 2015, 29, 507-510.	3.3	56
29	Novel therapeutic targets in myeloma bone disease. British Journal of Pharmacology, 2014, 171, 3765-3776.	2.7	8
30	Contributions of the Host Microenvironment to Cancer-Induced Bone Disease. Cancer Research, 2014, 74, 1625-1631.	0.4	81
31	Bone Marrow Stromal Cells Create a Permissive Microenvironment for Myeloma Development: A New Stromal Role for Wnt Inhibitor Dkk1. Cancer Research, 2012, 72, 2183-2189.	0.4	70
32	BTK inhibition in myeloma: targeting the seed and the soil. Blood, 2012, 120, 1757-1759.	0.6	14
33	Osteoclasts in Multiple Myeloma Are Derived from Gr-1+CD11b+Myeloid-Derived Suppressor Cells. PLoS ONE, 2012, 7, e48871.	1.1	105
34	Tumor–host cell interactions in the bone disease of myeloma. Bone, 2011, 48, 121-128.	1.4	49
35	Host-derived adiponectin is tumor-suppressive and a novel therapeutic target for multiple myeloma and the associated bone disease. Blood, 2011, 118, 5872-5882.	0.6	124
36	A mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease. Biology Direct, 2010, 5, 28.	1.9	96

CLAIRE M EDWARDS

#	Article	IF	CITATIONS
37	Gr-1+CD11b+ myeloid-derived suppressor cells: Formidable partners in tumor metastasis. Journal of Bone and Mineral Research, 2010, 25, 1701-1706.	3.1	47
38	Proteasome Inhibitors and the Wnt Signaling Pathway in Myeloma Bone Disease. , 2010, , 211-229.		1
39	A murine model of myeloma that allows genetic manipulation of the host microenvironment. DMM Disease Models and Mechanisms, 2009, 2, 604-611.	1.2	39
40	Myeloma cells exhibit an increase in proteasome activity and an enhanced response to proteasome inhibition in the bone marrow microenvironment in vivo. American Journal of Hematology, 2009, 84, 268-272.	2.0	40
41	The pathogenesis of the bone disease of multiple myeloma. Bone, 2008, 42, 1007-1013.	1.4	154
42	Increasing Wnt signaling in the bone marrow microenvironment inhibits the development of myeloma bone disease and reduces tumor burden in bone in vivo. Blood, 2008, 111, 2833-2842.	0.6	150
43	Wnt signaling: bone's defense against myeloma. Blood, 2008, 112, 216-217.	0.6	12
44	Eph Receptors and Ephrin Signaling Pathways: A Role in Bone Homeostasis. International Journal of Medical Sciences, 2008, 5, 263-272.	1.1	114
45	Osteoclasts in Myeloma Are Derived from Gr-1+CD11b+ Myeloid Immune Suppressor Cells of the Bone Marrow Niche in Vivo. Blood, 2008, 112, 736-736.	0.6	2
46	Apomine Enhances the Antitumor Effects of Lovastatin on Myeloma Cells by Down-Regulating 3-Hydroxy-3-methylglutaryl-Coenzyme A Reductase. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 228-235.	1.3	8
47	Selective targeting of death receptor 5 circumvents resistance of MC-63 osteosarcoma cells to TRAIL-induced apoptosis. Molecular Cancer Therapeutics, 2007, 6, 3219-3228.	1.9	25
48	Apomineâ,,¢, an inhibitor of HMG-CoA-reductase, promotes apoptosis of myeloma cells in vitro and is associated with a modulation of myeloma in vivo. International Journal of Cancer, 2007, 120, 1657-1663.	2.3	20
49	Agonists of TRAIL death receptors induce myeloma cell apoptosis that is not prevented by cells of the bone marrow microenvironment. Leukemia, 2007, 21, 805-812.	3.3	21
50	Protein Profiling in Myeloma In Vivo; Effects of Bortezomib in a Mouse Model of Myeloma Blood, 2007, 110, 255-255.	0.6	2
51	Role of osteoprotegerin (OPG) in cancer. Clinical Science, 2006, 110, 279-291.	1.8	98
52	LIGHT (TNFSF14), a novel mediator of bone resorption, is elevated in rheumatoid arthritis. Arthritis and Rheumatism, 2006, 54, 1451-1462.	6.7	89
53	Selective inhibition of Rab prenylation by a phosphonocarboxylate analogue of risedronate induces apoptosis, but not S-phase arrest, in human myeloma cells. International Journal of Cancer, 2006, 119, 1254-1261.	2.3	65
54	Advances in the management of myeloma bone disease. Expert Opinion on Pharmacotherapy, 2005, 6, 2781-2791.	0.9	5